Five Haplotypes Account for Fifty-Five Percent of ATM Mutations in Brazilian Patients With Ataxia Telangiectasia: Seven New Mutations

Gabriela Coutinho,^{1,2} Midori Mitui,¹ Catarina Campbell,¹ Beatriz T. Costa Carvalho,³ Shareef Nahas,¹ Xia Sun,¹ Yong Huo,¹ Chih-hung Lai,¹ Yvonne Thorstenson,⁴ Robert Tanouye,¹ Salmo Raskin,⁵ Chong A. Kim,⁶ Juan Llerena Jr,⁷ and Richard A. Gatti^{1*}

¹Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine, Los Angeles, California ²Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil ³Divisão de Alergia, Imunologia Clínica e Reumatologia, Departamento de Pediatria,

Universidade Federal de São Paulo, SP, Brazil

⁴Stanford Genome Technology Center, Stanford University, Palo Alto, California ⁵Laboratório Genetika, PR, Brazil

⁶Departamento de Genética Clínica, Instituto da Criança do Hospital das Clínicas, USP, SP, Brazil ⁷Instituto Fernandes Figueira, FIOCRUZ, RJ, Brazil

We have studied the molecular genetics of 27 Brazilian families with ataxia telangiectasia (AT). Five founder effect haplotypes accounted for 55.5% of the families. AT is an autosomal recessive disorder of childhood onset characterized by progressive cerebellar ataxia, ocular apraxia, telangiectasia, immunodeficiency, radiation sensitivity, chromosomal instability, and predisposition to cancer. The ATM gene spans more than 150 kb on chromosome region 11q23.1 and encodes a product of 3,056 amino acids. The ATM protein is a member of the phosphatidylinositol 3-kinase (PI-3K) family of proteins and is involved in cell cycle control and DNA repair pathways. DNA was isolated from lymphoblastoid cell lines and haplotyped using four STR markers (D11S1818, NS22, D11S2179, D11S1819) within and flanking the ATM gene; all allele sizes were standardized in advance. In addition to the STR haplotypes, SNP haplotypes were determined using 10 critical polymorphisms.

The entire gene was screened sequentially by protein truncation testing (PTT), single strand conformation polymorphism (SSCP), and then denaturing high performance liquid chromatography (dHPLC) to identify the disease-causing mutations. Of the expected 54 mutations, 50 were identified. All mutations but one, led to a truncated or null form of the ATM protein (nonsense, splice site, or frameshift). Five families (18.5%) carried a deletion of 3450nt (from IVS28 to Ex31), making this one of the two most common Brazilian mutations. Mutations were located throughout the entire gene, with no clustering or hotspots. Standardized STR haplotype analysis greatly enhanced the efficiency of mutation screening. © 2003 Wiley-Liss, Inc.

KEY WORDS: ataxia telangiectasia; ATM haplotypes; ATM mutations; Brazilian families

INTRODUCTION

Grant sponsor: NIH; Grant numbers: NS36323, CA76513; Grant sponsor: Ataxia Telangiectasia Medical Research Foundation.

Received 12 March 2003; Accepted 1 August 2003 DOI 10.1002/ajmg.a.20570 Ataxia telangiectasia (AT) is an autosomal recessive disorder of childhood onset with an incidence of 1:40,000 to 1:100,000 live births. It is characterized by progressive cerebellar ataxia with degeneration of the Purkinje cells, conjunctival telangiectasia, ocular motor apraxia, elevated serum alphafetoprotein, immunological deficiencies with recurrent sino-pulmonary infections, chromosomal instability, sensitivity to ionizing radiation, and predisposition to cancer, especially lymphomas and leukemias [Boder and Sedwick, 1958; Taylor and

^{*}Correspondence to: Richard A. Gatti, The David Geffen School of Medicine, Department of Pathology, Los Angeles, CA 90095-1732. E-mail: rgatti@mednet.ucla.edu

Harnden, 1975; Metcalfe et al., 1996; Gatti, 2002]. Additional characteristics of AT include premature aging, thymic and ovarian degeneration, growth retardation, and telomere shortening. The carrier frequency in the Caucasian population has been variously estimated at 1-1.8% and carriers have an increased susceptibility to cancer, more specifically, breast cancer in women [Swift et al., 1987; Easton, 1994; Gatti et al., 1999; Concannon, 2002].

The ATM gene is mutated in AT patients; most patients are compound heterozygotes. The gene maps to chromosome region 11q23.1 [Gatti et al., 1988; Lange et al., 1995]. It is composed of 66 exons spread over 150 kb of genomic DNA [Savitsky et al., 1995a,b] and encodes a 13 kb mature transcript with an open reading frame (ORF) of 9168 nucleotides. The 370 kDa ATM protein, located predominantly in the cell nucleus, is ubiquitously expressed and is a member of the phosphatidylinositol 3-kinase (PI-3K) family with its kinase domain at the C-terminus region [Hartley et al., 1995; Chen and Lee, 1996]. The ATM protein shows strong similarities to several checkpoint/damage response proteins, such as the Saccharomyces cerevisiae Tel1p and Mec1p, Rad 3 in Schizosaccharomyces pombe, mei-41 in Drosophila melanogaster, and human DNA-PK_{CS} and ATR [Savitsky et al., 1995a,b; Lavin and Shiloh, 1997; Platzer et al., 1997].

Although the phenotype of AT is distinct, the age of onset and rate of progression is variable. The initial observation of telangiectasias may be late, the severity of pulmonary infections varies, and approximately 5% of patients do not show increased levels of alphafetoprotein. Although the incidence of cancer in AT patients is about 35%, the occurrence of certain tumors types in some families suggest that this predisposition may not be uniform and may relate to the types of mutations found in different families [Swift et al., 1987, 1991; Gatti, 2002]. About 70% of the reported mutations are predicted to truncate the ATM protein [Gilad et al., 1996; Telatar et al., 1996, 1998a; Castellvi-Bel et al., 1999; Teraoka et al., 1999; Eng et al., 2003]. Mutations in the conserved GT and AG splice sites regions, leading to exon skipping are frequently observed while missense mutations account for only about 10% of all ATM mutations in AT patients (http://www.benaroyaresearch.org/bri investigators/atm.htm).

Previous studies have shown that specific short tandem repeat (STR) haplotypes observed in ethnic populations can be associated with founder effect mutations, i.e., "affected haplotypes" [Uhrhammer et al., 1995; Telatar et al., 1996; Ejima and Saaki, 1998; Laake et al., 1998; Telatar et al., 1998a,b]. Single nucleotide polymorphism (SNP) haplotyping across the region of the *ATM* gene is of limited informativeness [Bonnen et al., 2000; Thorstenson et al., 2001]. Despite this, when SNP and STR haplotyping were combined with mutation analysis, valuable insights were discovered as to the age of some mutations; ancestral relationships extend beyond conventional ethnicities [Campbell et al., 2003].

We have studied the spectrum of haplotypes and mutations in the *ATM* gene in Brazilian patients from 27 unrelated AT families. This work extends our previous report comparing the haplotypes and mutations of Iberian AT families [Mitui et al., 2003]. To facilitate mutation identification in such a complex gene, we prescreened all patients by STR haplotyping. We have identified 50 of the expected 54 mutations and 7 novel mutations were found. Five affected haplotypes accounted for 55.5% of Brazilian ATM mutations. Haplotype prescreening greatly enhanced the efficiency of mutation detection especially when mutations were encountered that would have been missed by conventional screening strategies.

MATERIALS AND METHODS

Subjects

Twenty-seven Brazilian patients with clinical symptoms and laboratory results (alphafetoprotein levels, western blot, and colony survival assay (CSA)) compatible with classical AT were selected for this study. Lymphoblastoid cell lines (LCLs) were established on 18 of 27 patients. DNA and RNA were isolated from LCLs and the diagnosis was confirmed by immunoblotting [Becker-Catania et al., 2000; Chun et al., 2003] and by CSA [Huo et al., 1994; Sun et al., 2002]. For the remaining nine patients, only DNA was available for analysis. At least one ATM mutation was eventually identified in each of the 27 patients.

STR Haplotype

STR haplotypes were identified using four microsatellite markers spanning an interval of 1.4 cM: A4 (D11S1819) [Rotman et al., 1994], NS22 [Udar et al., 1999], D11S2179 [Vanagaite et al., 1995], and A2 (D11S1818) [Rotman et al., 1994; Lange et al., 1995]. Primers were designed to flank each STR and used for PCR amplification by γ^{33} P-ATP end-radiolabeled fragments [Campbell et al., 2003; Mitui et al., 2003]. Alleles were standardized using a control DNA, CEPH 1347-2. Phases were defined by haplotyping the parents of propositi, whenever available, or from other homozygous patients carrying the same mutation.

SNP Haplotype

SNP haplotypes were identified by single strand conformation polymorphism (SSCP) at 10 polymorphic sites in the *ATM* gene [Castellvi-Bel et al., 1999; Campbell et al., 2003]. These are in complete linkage disequilibrium over >133 kb [Thorstenson et al., 2001].

Mutation Identification

DNAs were sequentially screened for mutations by protein truncation testing (PTT) [Telatar et al., 1996], SSCP [Castellvi-Bel et al., 1999], and denaturing high performance liquid chromatography (dHPLC) [Thorstenson et al., 2001]. Regions that were identified as abnormal were sequenced using an automated method (ABI 3700) or manual radiolabeled sequencing (USB). Mutations were confirmed in both forward and reverse directions.

Identifying Phase

The fragment sizes obtained for each marker were compared between patients and respective parents to establish the allelic segregation. Next, we compared the STR haplotypes of all patients included in our database to identify possible recurring haplotypes.

RESULTS

Haplotypes

Thirty-two different STR haplotypes were observed in 27 Brazilian AT patients and 5 of them were seen more than once (i.e., recurring) in 55.5% of the families (Fig. 1). Although most recurring haplotypes were identical between patients, some variation among STR alleles was notable (especially for the marker S1818) and this may be a consequence of polymerase slippage or uneven crossing-over during cell division.

The SNP haplotypes H2, H3, H4, and H7 (Fig. 1) were identified in our patients, the first three being common worldwide. The H7 haplotype (BRAT20-3) has not been identified previously outside of African populations [Thorstenson et al., 2001]. We found approximately the same proportions of SNP haplotypes in our population as in the global population, with H2 being the most prevalent (67.9%) followed by H4 (24.5%).

Specific STR haplotypes were found to segregate with specific mutations (Table I). This is in accordance with our previous observations, which suggest that STR haplotypes and specific ATM mutations have evolved on specific ancestral SNP haplotypes [Campbell et al., 2003].

We observed a one repeat (CA) difference with regard to the marker D11S1819 for haplotype [5] (AT121LA and BRAT25-3) and haplotype [I] (BRAT26-3). In the case of haplotype [5], the two patients gained one repeat, whereas for haplotype [I] one repeat was lost. This most likely reflects microsatellite instability. We also observed instability with marker D11S2179 (BRAT26-3).

Mutations

Twenty-eight distinct mutations were identified on 50 of 54 chromosomes, and all but one would theoretically lead to a truncated form of the ATM protein (nonsense, splice site, or frameshift) (Table I). Mutations were located throughout the entire gene, without the occurrence of a mutation hotspot (Fig. 2).

Seven mutations have not been previously described: two nonsense (1520T > A, 4198A > T); three frameshifts (1330insCC, 8372ins16, 9080insA); one aberrant splicing (IVS11-2A > G), and one missense (8726G > C). The latter mutation (R2909T) was identified in BRAT5, in the highly conserved region in the kinase domain. A particularly interesting new mutation, 8372ins16, identified in BRAT29-3 duplicates 16 nucleotides immediately adjacent to the mutation site. The mutation IVS11-2A > G (BRAT[T]) disrupts the 3' acceptor splice site and activates a new 3'acceptor site nine nucleotides downstream of the mutation site, causing the deletion of the first 7nt of exon 12.

Two large deletions were observed in our patients. The mutation IVS28+1711del 3450nt was observed in five families and deleted exons 29, 30, and part of 31. Like most large deletions, it is missed by conventional screening techniques in heterozygous patients, as the normal allele masks the deleted allele in PCR-based assays. In one such patient, because the second allele was located within the same region and, thus, occurred in hemizygous form, it was also missed by dHPLC [Mitui et al., 2003]. A homozygous deletion of ~ 17 kb was observed in BRAT3 between two nearly identical LINE repeats in the ATM gene. It was not possible to precisely define the break points. This mutation was previously identified in Costa Rican AT patients and also in patients of Iberian origins [Telatar et al., 1996; Mitui et al., 2003].

Polymorphisms and Variants

Nine variants were seen in the Brazilian AT patients in the course of searching for mutations, all of which have been reported previously [Hacia et al., 1998; Shayeghi et al., 1998; Castellvi-Bel et al., 1999; Li et al., 1999; Sandoval et al., 1999; Sommer et al., 2002; Buzin et al., 2003]. We identified the frequencies of each variant observed among AT patients in 100 chromosomes obtained from normal Brazilian controls (Table II). The missense variant, 2119T > C (S707P), identified in BRAT11-3, has been associated with breast cancer patients in a cohort study and deemed to be a polymorphism [Sommer et al., 2002]; mutagenesis studies are underway to functionally evaluate this DNA change. This variant was not idenfied in any of the Brazilian controls.

DISCUSSION

The large size of the *ATM* gene makes the screening for mutations expensive and labor intensive. The approach of initially haplotyping the propositi and relatives (to identify phases) has been shown to be a successful strategy in screening ethnic populations for mutations in the *ATM* gene [Fukao et al., 1998; Telatar et al., 1998a,b] (Fig. 3). This approach may be particularly important in characterizing mutations in other large genes. In developing countries, it may lower the costs of mutation detection.

The lack of detectable ATM protein levels by Western blot analysis and the abnormal CSA results (i.e., radiosensitivity) (data not shown) offer strong support for a clinical diagnosis of AT. All propositi in this study met these criteria. The diagnoses were also supported by finding mutations in all patients. Most nonsense mutations were associated with the classical AT phenotype in Brazil, suggesting that patients with milder phenotypes may exist who have non-truncating types of mutations as well.

Among the novel mutations identified in this study, six were predicted to truncate the ATM protein, either

	BRAT 1	BRAT 3	BRAT 4	BRAT 5	BRAT 8	BRAT 10
S1819	135 139	133 133	139 139	129 141	137 131	131 131
NS22	163 163	155 155	163 165	169 173	159 159	159 159
S2179	139 143	147 147	139 147	143 143	139 141	143 143
S1818	162 152	146 146	154 160	146 158	162 160	160 160
	[5] [B]	[C] [C]	[D] [E]	[A] [AA]	[1] [F]	[2] [2]
SNP	H2 *	H4 H4	H2 H2	H4 H4	H2 H2	H2 H2
	DD AT 11 2	DD 477 12	DDITIO			
\$1910	121 120	BRAT 12	BRAT 13	BRAT 14	ATIZILA	AT162LA
NS22	151 159	150 150	135 131	135 141	137 131	135 131
\$2179	141 143	139 139	103 159	101 101	103 159	161 159
S1818	160 160	162 150	159 145	145 159	139 141	145 143
51010	[G] [H]		[5] [2]		100 154	
SNP	$H_2 H_2$	H^2 H^2	$H^2 H^2$	(J) [K]	[J] [L] H2 H2	[M] $[2]$
			112 112	412 115-	112 112	115 112
	BRAT 15.3	BRAT 16.3	BRAT 17.3	BRAT 19.3	BRAT 20.3	BRAT 21.3
S1819	135 137	131 131	135 131	135 131	133 131	131 131
NS22	159 159	159 159	173 165	163 173	171 173	165 165
S2179	145 139	143 143	143 141	141 141	143 141	139 139
S1818	156 160	158 160	154 166	158 160	156 158	156 154
	[I] [1]	[2] [2]	[3] [N]	[O] [P]	[Q] [R]	[S] [S]
SNP	H2 H2	H2 H2	H4 H2	<h2 h4=""></h2>	H7 H4	H2 H2
	BRAT 22.3	BRAT 23.3	BRAT 24	BRAT 25.3	BRAT 26.3	BRAT 27.3
S1819	135 131	137 131	131 131	131 137	133 133	137 135
NS22	159 163	173 161	159 159	163 163	159 157	159 173
S2179	145 139	143 141	143 143	139 139	147 143	139 141
S1818	150 158	158 160	160 160	158 154	150 166	162 160
	[I] [T]	[U] [V]	[2] [2]	[T] [5]	[I] [X]	[1] [Y]
SNP	H2 H2	H4 H3	H2 H2	H2 H2	H2 H4	H2 H4
	BRAT 28.3	<brat 29.3=""></brat>	BRAT 30.3			
S1819	139 139	131 135	135 137			
NS22	173 173	159 175	159 159			
S2179	143 143	143 133	145 139			
S1818	152 152	160 158	150 162			

36

Coutinho et al.

[W] [W]

[1]

[I]

Brazilian Haplotypes and ATM Mutations 37

by frameshifts or by introducing a premature termination codon. A particularly interesting mutation, 8372ins16, identified in patient BRAT29-3, duplicates 16 nucleotides immediately adjacent to the mutation site. This duplication might be a consequence of unequal crossing-over. The haplotype phase associated with this mutation could not be established due to the absence of genetic material on the parents of the patient.

The only missense mutation identified in our case study, R2909T, which substitutes a conserved amino

acid in the PI-3K domain, underscores the importance of this amino acid to the biological activity of the protein. More interestingly, this patient also carries a nonsense mutation, and in contrast to what was anticipated for a patient with one nonsense and one missense mutation [Becker-Catania et al., 2000], our patient does not show any detectable ATM protein. This suggests that the C-terminus end of the protein may also participate in the stabilization of the ATM protein [Becker-Catania et al., 2000].

TABLE I.	Genotype and Haplotype/Mutations	Correlation in the ATM Gene in Brazilian	Patients With Classical A-T Phenotype

Patient	Genotype	STR haplo	Mutation	Ex/In	Consequence
BRAT1	Compd Htz	[5] [B]	8264delATAAG *	58	Deletion of Ex 58
BRAT3	Hom	[C]	$IVS63del{-17}$ kb	IVS63	Frameshift
BRAT4	Compd	[D]	IVS28 + 1G > A	IVS28	(?) Deletion of 120nt
	Htz	Ē	1563delAG	12	Frameshift
BRAT5	Compd	[A]	4198A > T	30	Nonsense
	Htz	[AA]	8726G > C	62	R2909T
BRAT8	Compd	[1]	3802delG	28	Frameshift
Dimito	Htz	[F]	7884delTATAT	55	Frameshift
BRAT10	Hom	[2]	IVS28 + 1711 del 3450 bp	IVS28	del Ex $29-31$
BRAT11-3	Compd	[G]	ND		
5141111 0	Htz	[H]	7517delGAGA	53	(?) del of Ex 53
BRAT12	Compd	[1]	3802delG	28	Frameshift
DIWITIZ	Htz	(T)	7913G > A	55	Nonsense
BRAT13	Compd	[2]	IVS28 + 1711 del 3450 hn	IVS28	del Ex 29–31
DIWITIO	Htz	[5]	8264delATAAG	58	Deletion of Ex 58
BRAT14	Compd	[J]	1110C>G	11	Nonsense
DIMITIT	Htz	[K]	IVS54-3T > G	IVS54	(?) del of Ex 55
ΔΤ191Ι.Δ	Compd	[5]	8264delATAAG	58	Deletion of Ex 58
111121111	Htz	[U]	3485T > G	26	Nonsense
AT162LA	Compd	[M]	4002delCTTA	20	Frameshift
111102111	Htz	[9]	$VS28 \pm 1711$ del 3450 hn	IVS28	del Ex $29-31$
BRAT15-3	Compd	[2]	$7913G > \Delta$	55	Nonsense
D101110-0	Htz	[1]	3802dalG	28	Frameshift
BRAT16 3	Hom	[1]	WS28 + 1711dol3450 hr	IVS28	dol Fy 20 31
DIAT 10-5	Compd	[2]	5644C > T	20	Nonconco
DIATI7-5	Utra Utra	[J]	8305dol10	59	Framoshift
BDAT10 2	Compd		8690C \ T	61	Nonconco
DIA119-0	Ulipu	[0]	42020 > 1	21	Nonconco
BD 1 T 20 2	Compd		4505A > 1 7709C > T	55	Nonconco
DIA120-5		[Q] [D]	1792C > T	00 99	Nonconco
DDAT01 9	ПlZ Цат	[1]	47320 > 1 1590T \ A	00 10	Nonsense
DRA121-0 DDAT00.9	Commd	[O]	13201 > A 7019C > A	12	Nonsense
DRA122-3			1910G > A	00 TVC11	dol first 7mt of Fr 19
DD 1 T 0 9	Commed		VS11-2A > G VS52.2A > C	11011	del Er 54
DNA125-5			1V505-2A > C	10500	Lei Ex 54
		[U]	90801115A	00	Framesniit
DRA124	Comm		11528 + 17110013450 bp	11020	del Ex 29-31
DKA129-3	Compa	[1]	1VS11-2A > G	10511	Deletion (F. 59
	Htz	[0]	8264delATAAG	58	Deletion of Ex 58
BRA126-3	Compd		7913G>A	55	Nonsense
	Htz	[A]	1330InsCC	12	Frameshilt
BRAT27-3	Compd		3802delG	28	Frameshift
	Htz			0	
BRAT28-3	Hom		640del1	8	Frameshift
BKAT29-3	Compd	<>		50	
	Htz	\sim	83721ns16	59	Frameshift
BRAT30-3	Compd	[1]	7913G>A	55	Nonsense
	Htz	[1]	3802delG	28	Frameshift

ND, not yet detected.

*Insufficient DNA.

<>Phase not defined.

New mutations in bold.

 $(?) \ Theoretical \ consequence.$

Fig. 2. Distribution of ATM mutations identified in Brazilian AT patients within the coding region.

Five mutations identified in the studied group had been previously observed in different European populations: Spain (640delT, 5644C > T, 8264delATAAG), Germany (3802delG), and Italy (7517delGAGA) (Gilad et al., 1996; Mitui et al., 2003]. These data corroborate the genetic findings of other authors that a variety of European backgrounds contribute to Brazilian lineages

TABLE II. Frequencies of Polymorphisms Identified in Brazilian AT Patients Among 50 Normal Brazilians

Ex/In	Variant	Amino acid change	Allelic frequency (wt:variant) (N = 100 chromosomes)
IVS4	IVS4 + 37 insAA		40:60
15	2119T > C	S707P	100:0
22	IVS22-77T > C		16:84
IVS24	IVS24-9delT		78:22
IVS25	IVS25-12insA		20:80
32	4578C > T	P1526P	81:19
41	5793T > C	A1931A	99:1
48	IVS48-69insATT		87:13
62	$IVS62\text{-}65G\!>\!A$		100:0

[Salzano and Freire-Maia, 1967; Raskin et al., 1999; Carvalho-Silva et al., 2001].

Despite the recent colonization of Brazil by Europeans, Africans, and Amerindians, two unique founder effect mutations were found (haplotypes [I] and [T]). The mutation 7913G > A, associated with the recurring haplotype [I], introduces a premature termination codon. Although most of the nonsense mutations were identifiable by the protein truncation test, this one mutation failed, on repeated testing, to show a truncated band and was detected by SSCP instead. Because the truncation would occur in two overlapping PTT regions, we think that it should have been detected by PTT in at least one of the two regions.

Fig. 3. ATM mutation detection strategy. After laboratory confirmation of the AT diagnosis standardized STR haplotypes are identified; if the haplotype is recognized, the associated mutation is confirmed by direct DNA sequencing. A database of STR haplotypes and associated mutations greatly simplifies the identification of ATM mutations. If the STR haplotype is not recognized, RNA is isolated, cDNA prepared, and protein truncation testing

(PTT) performed to detect truncating mutations. If PTT fails to identify regions of mutations, either single strand conformation polymorphism (SSCP) or denaturing high performance liquid chromatography (dHPLC) is performed to screen for all types of mutations. Similarly, if abnormal regions are identified in either technique, DNA is sequenced for mutation identification.

PTT has been shown to be a very useful tool for the identification of nonsense mutations in the ATM gene [Telatar et al., 1996, 1998a,b; Teraoka et al., 1999] and in fact, most of our ATM mutations are detected by PTT. Nevertheless, premature termination codons should trigger the degradation of mRNAs by the nonsense mediated decay (NMD) pathway [Maquat and Carmichael, 2001; Byrd, 2002]. Despite this, we and others routinely detect a truncated RNA message but not a truncated protein. This calls into question whether the NMD pathway is intact in AT cells. ATX/hSMG1 has been shown to be one of the PI-3 kinases responsible for the phosphorylation of Upf1 [Yamashita et al., 2001], thereby participating directly in the NMD pathway. The catalytic similarities between ATX and ATM suggest that Upf1 may also be a phosphorylation target of ATM.

By establishing a Brazilian spectrum of haplotypes and associated mutations, we hope to provide valuable information towards the counseling of Brazilian families with AT and in the early diagnosis of very young patients. In general, we recommend prescreening new AT patients for haplotypes that are common to the ethnicity of the particular family before analyzing the entire *ATM* gene for mutations. Furthermore, the growing evidence that ATM mutations may account for susceptibility to various cancers in heterozygotes as well as homozygotes makes it important to understand the ATM mutation spectrum on a global basis.

REFERENCES

- Becker-Catania SG, Chen G, Hwang MJ, Wang Z, Sun X, Sanal O, Bernatowska-Matuszkiewicz E, Chessa L, Lee EY, Gatti RA. 2000. Ataxia Telangiectasia: Phenotype/genotype studies of ATM protein expression, mutations, and radiosensitivity. Mol Genet Metab 70:122– 133.
- Boder E, Sedwick RP. 1958. Ataxia telangiectasia: A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia, and frequent pulmonary infection. Pediatrics 21:526.
- Bonnen PE, Story MD, Ashorn CL, Buchholz TA, Weil MM, Nelson DL. 2000. Haplotypes at ATM identify coding-sequence variation and indicate a region of extensive linkage disequilibrium. Am J Hum Genet 67:1437– 1451.
- Buzin CH, Gatti RA, Nguyen VQ, Wen CY, Mitui M, Sanal O, Chen JS, Nozari G, Mengos A, Li X, Fujimura F, Sommer SS. 2003. Comprehensive scanning of the ATM gene with DOVAM-S. Hum Mutat 21:123– 131.
- Byrd P. 2002. Killing the messenger: New insights into nonsense-mediated mRNA decay. J Clin Invest 109:3–6.
- Campbell C, Mitui M, Eng L, Coutinho G, Thorstenson Y, Gatti RA. 2003. ATM mutations on distinct SNP and STR haplotypes in Ataxia Telangiectasia patients of differing ethnicities reveal ancestral founder effects. Hum Mut 21:80–85.
- Carvalho-Silva DR, Santos FR, Rocha J, Pena SD. 2001. The phylogeography of Brazilian Y-chromosome lineages. Am J Hum Genet 68:281– 286.
- Castellvi-Bel S, Sheikhavandi S, Telatar M, Tai LQ, Hwang M, Wang Z, Yang Z, Cheng R, Gatti RA. 1999. New mutations, polymorphisms, and rare variants in the *ATM* gene detected by a novel SSCP strategy. Hum Mut 14:156–162.
- Chen G, Lee EYHP. 1996. The product of the *ATM* gene is a 370-kDa nuclear phosphoprotein. J Biol Chem 271:33693–33697.
- Chun HH, Sun X, Nahas SA, Teraoka S, Lai C-H, Concannon P, Gatti RA. 2003. Improved diagnostic testing for staxia-telangiectasia by immunoblotting of nuclear lysates for ATM protein expression. Mol Genet Metab (in press).
- Concannon P. 2002. ATM heterozygosity and cancer risk. Nat Genet 32: 89–90.

Brazilian Haplotypes and ATM Mutations 39

- Easton DF. 1994. Cancer risks in AT heterozygotes. Int J Radiat Biol 66(Suppl 6):S177-S182.
- Ejima Y, Saaki MS. 1998. Mutations of the *ATM* gene detected in Japanese Ataxia Telangiectasia patients: Possible preponderance of two founder effect mutations 4612del165 and 7883del5. Hum Genet 102:403–408.
- Eng L, Coutinho G, Nahas S, Yeo G, Tanouge R, Dork T, Burge C, Gatti RA. 2003. Non-classical splicing mutations in the coding and non-coding regions of the ATM gene: Maximum entropy estimates of splice junction strengths. Hum Mutat (in press).
- Fukao T, Song XQ, Yoshida T, Tashita H, Kaneko H, Teramoto T, Inoue R, Katamura K, Mayumi M, Hiratani M, Taniguchi N, Arai J, Wakiguchi H, Bar-Shira A, Shiloh Y, Kondo N. 1998. Ataxia Telangiectasia in the Japanese population: Identification of R1917X, W2491R, R2909G, IVS33 + 2T > A, and 7883del5, the latter two being relatively common mutations. Hum Mut 12:338–343.
- Gatti RA. 2002. Ataxia-Telangiectasia. In: Vogelstein B, Kinzler KW, editors. The genetic basis of human cancer. New York: Publ. McGraw-Hill. pp 239–266.
- Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K, Lathrop GM, Leppert M, Nakamura Y, O'Cannell P, Paterson M, Salser W, Sanal O, Silver J, Sparkes RS, Susi E, Weeks DE, Wei S, White R, Yoder F. 1988. Localization of an Ataxia Telangiectasia gene to chromosome 11q22-23. Nature 336:577–580.
- Gatti RA, Tward A, Concannon P. 1999. Cancer risk in ATM heterozygotes: A model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68:419-423.
- Gilad S, Khosravi R, Shkedy D, Uziel T, Ziv Y, Savitsky K, Rotman G, Smith S, Chessa L, Jorgensen TJ, Harnik R, Frydman M, Sanal O, Portnoi S, Goldwicz Z, Jaspers NG, Gatti RA, Lenoir G, Lavin MF, Tatsumi K, Wegner RD, Shiloh Y, Bar-Shira A. 1996. Predominance of null mutations in Ataxia Telangiectasia. Hum Mol Genet 5(4):433–439.
- Hacia JG, Sun B, Hunt N, Edgemon K, Mosbrook D, Robbins C, Fodor SP, Tagle DA, Collins FS. 1998. Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays. Genome Res 8(12):1245–1258.
- Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP. 1995. DNA dependent protein kinase catalytic subunit: A relative of the phosphatidylinositol 3-kinase and the Ataxia Telangiectasia gene product. Cell 82:849–856.
- Huo YK, Wang Z, Hong JH, Chessa L, McBride WH, Perlman SL, Gatti RA. 1994. Radiosensitivity of Ataxia Telangiectasia, X-linked agammaglobulinemia, and related syndromes using a modified colony survival assay. Cancer Res 54:2544-2547.
- Laake K, Telatar M, Geitvik GA, Hansen RO, Heiberg A, Andresen AM, Gatti R, Borresen-Dale AL. 1998. Identical mutation in 55% of the ATM alleles in 11 Norwegian AT families: Evidence for a founder effect. Eur J Hum Gen 6:235–244.
- Lange E, Borresen AL, Chen X, Chessa L, Chiplunkar S, Concannon P, Dandekar S, Gerken S, Lange K, Liang T, et al., 1995. Localization of an Ataxia Telangiectasia gene to an approximately 500-kb interval on chromosome 11q23.1: Linkage analysis of 176 families by an international consortium. Am J Hum Genet 57:112-119.
- Lavin M, Shiloh Y. 1997. The genetic defect in Ataxia Telangiectasia. Ann Rev Immunol 15:177–202.
- Li A, Huang Y, Swift M. 1999. Neutral sequence variants and haplotypes at the 150 kb Ataxia Telangiectasia locus. Am J Med Genet 86:140–144.
- Maquat L, Carmichael G. 2001. Quality control of mRNA function. Cell 104:173–176.
- Metcalfe JA, Parkhill J, Campbell L, Stacey M, Biggs P, Byrd PJ, Taylor AM. 1996. Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 13:350–353.
- Mitui M, Campbell C, Coutinho G, Sun X, Lai CH, Thorstenson Y, Castellvi-Bel S, Fernandez L, Monros E, Tavares Costa Carvalho B, Porras O, Fontan G, Gatti RA. 2003. Independent mutational events are rare in the *ATM* gene: Haplotype prescreening enhances mutation detection rate. Hum Mutat 22:43–50.
- Platzer M, Rotman G, Bauer D, Uziel T, Savitsky K, Bar-Shira A, Gilad S, Shiloh Y, Rosenthal A. 1997. Ataxia Telangiectasia locus: Sequence analysis of 184 kb of human genomic DNA containing the entire ATM gene. Genome Res 7:592–605.
- Raskin S, Phillips JA, Kaplan G, McClure M, Vnencak-Jones C, Rozov T, Cardieri JM, Marostica P, Abreu F, Giugliani R, Reis F, Rosario NA, Ludwig N, Pereira L, Faucz F, Gabardo J, Culpi L. 1999. Geographic

40 Coutinho et al.

heterogeneity of 4 common worldwide cystic fibrosis non-DF508 mutations in Brazil. Hum Biol $71{:}111{-}121.$

- Rotman G, Vanagaite L, Collins FS, Shiloh Y. 1994. Three dinucleotide repeat polymorphisms at the ataxia telangiectasia locus. Hum Mol Genet 3:2079.
- Salzano FM, Freire-Maia N. 1967. Populações brasileiras: Aspectos demográficos, genéticos e antropológicos. São Paulo: Companhia Editora Nacional. pp 1–44.
- Sandoval N, Platzer M, Rosenthal A, Dork T, Bendix R, Skawran B, Stuhrmann M, Wegner RD, Sperling K, Banin S, Shiloh Y, Baumer A, Bernthaler U, Sennefelder H, Brohm M, Weber BH, Schindler D. 1999. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8:69–79.
- Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G. 1995a. The complete sequence of the coding region of the *ATM* gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4:2025–2032.
- Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Simmons A, Clines GA, Sartiel A, Gatti RA, Sanal O, Lavin MF, Jaspers NEJ, Taylor AMR, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y. 1995b. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753.
- Shayeghi M, Seal S, Regan J, Collins N, Barfoot R, Rahman N, Ashton A, Moohan M, Wooster R, Owen R, Bliss JM, Stratton MR, Yarnold J. 1998. Heterozygosity for mutations in the ataxia telangiectasia gene is not a major cause of radiotherapy complications in breast cancer patients. Br J Cancer 78:922–927.
- Sommer SS, Buzin CH, Jung M, Zheng J, Liu Q, Jeong SJ, Moulds J, Nguyen VQ, Feng J, Bennett WP, Dritschilo A. 2002. Elevated frequency of ATM gene missense mutations in breast cancer relative to ethnically matched controls. Cancer Genet Cytogenet 134:25–32.
- Sun X, Becker-Catania SG, Chun HH, Hwang MJ, Huo Y, Wang Z, Mitui M, Sanal O, Chessa L, Crandall B, Gatti RA. 2002. Early diagnosis of ataxia telangiectasia using radiosensitivity testing. J Pediatr 140:724–731.
- Swift M, Reitnauer PJ, Morrell D, Chase CL. 1987. Breast and other cancers in families with Ataxia Telangiectasia. N Engl J Med 316:1289.
- Swift M, Morrell D, Massey RB, Chase CL. 1991. Incidence of cancer in 161 families affected by Ataxia Telangiectasia. N Engl J Med 325:1831– 1836.

- Taylor AMR, Harnden DG. 1975. Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity. Nature 258:427-429.
- Telatar M, Wang Z, Udar N, Liang T, Bernatowska-Matuszkiewicz E, Lavin M, Shiloh Y, Concannon P, Good RA, Gatti RA. 1996. Ataxia Telangiectasia: Mutations in ATM cDNA detected by protein truncation screening. Am J Hum Genet 59:40–44.
- Telatar M, Teraoka S, Wang Z, Chun HH, Liang T, Castellvi-Bel S, Udar N, Borresen-Dale AL, Chessa L, Bernatowska-Matuszkiewicz E, Porras O, Watanabe M, Junker A, Concannon P, Gatti RA. 1998a. Ataxia Telangiectasia: Identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet 62:86–97.
- Telatar M, Wang S, Castellvi-Bel S, Tai LQ, Sheikhavandi S, Regueiro JR, Porras O, Gatti RA. 1998b. A model for ATM heterozygote identification in a large population: Four founder-effect ATM mutations identify most of Costa Rican patients with ataxia telangiectasia. Mol Genet Metab 64:36–43.
- Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P. 1999. Splicing defects in the Ataxia Telangiectasia gene, ATM: Underlying mutations and consequences. Am J Hum Genet 64:1617–1631.
- Thorstenson YR, Shen P, Tusher VG, Wayne TL, Davis RW, Chu G, Oefner PJ. 2001. Global analysis of ATM polymorphism reveals significant functional constraint. Am J Hum Genet 69:396–412.
- Udar N, Farzad S, Tai LQ, Bay JO, Gatti RA. 1999. NS22: A highly polymorphic complex microsatellite marker within the *ATM* gene. Am J Med Genet 82:287–289.
- Uhrhammer N, Lange E, Porras O, Naeim A, Chen X, Sheikhavandi S, Chiplunkar S, Yang L, Dandekar S, Liang T, Lange K, Gatti RA. 1995. Sublocalization of an Ataxia Telangiectasia gene distal to D11S384 by ancestral haplotyping in Costa Rican families. Am J Hum Genet 57:103– 111.
- Vanagaite L, James MR, Rotman G, Savitsky K, Bar-Shira A, Gilad S, Ziv Y, Uchenik V, Sartiel A, Collins FS, Sheffield VC, Richard CW III, Weissenback J, Shiloh Y. 1995. A high-density microsatellite map of the Ataxia Telangiectasia locus. Hum Genet 95:451–454.
- Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S. 2001. Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15:2215– 2228.