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ABSTRACT
Autosomal dominant cerebellar ataxias (ADCA) are heterogeneous diseases with a highly variable phenotype and genotype. They can be 
divided into episodic ataxia and spinocerebellar ataxia (SCA); the latter is considered the prototype of the ADCA. Most of the ADCA are caused 
by polyglutamine expansions, mainly SCA 1, 2, 3, 6, 7, 17 and Dentatorubral-pallidoluysian atrophy (DRPLA). However, 30% of patients remain 
undiagnosed after testing for these most common SCA. Recently, several studies have demonstrated that the new generation of sequencing 
methods are useful for the diagnose of these patients. This review focus on searching evidence on the literature, its usefulness in clinical 
practice and future perspectives.
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RESUMO
As ataxias cerebelares autossômicas dominantes (ACAD) são doenças heterogêneas com fenótipo e genótipo altamente variáveis. 
Podem ser divididas em ataxia episódica e ataxia espinocerebelar (SCA), sendo este último considerado o protótipo do ACAD. A maior parte 
das ACAD são causadas por expansões de poliglutaminas, principalmente SCA 1, 2, 3, 6, 7, 17 e atrofia dentatorubro-palidoluisiana (DRPLA). 
No entanto, 30% dos pacientes permanecem sem diagnóstico após o teste para essas SCA mais comuns. Recentemente, vários estudos 
têm demonstrado que a nova geração de métodos de sequenciamento são ferramentas úteis para o diagnóstico desses pacientes. Esta é 
uma revisão sistemática da literatura, com foco em sua utilidade na prática clínica e em perspectivas futuras.

Palavras-chave: sequenciamento de nova geração; ataxias cerebelares autossômicas dominantes; ataxias espinocerebelares.
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INTRODUCTION

Autosomal dominant cerebellar ataxias (ADCA) com-
prise a group of inherited cerebellar ataxias that are clin-
ically and genetically heterogeneous1. They can be caused 
by several mechanisms, such as expansion of short tan-
dem repeats (STR), mainly trinucleotide repeat expansions 
(TRE), and less commonly, single nucleotide variation and 
short insertions and deletions (indels). The most studied 
mechanism related to TRE is the one caused by expanded 

polyglutamine. These proteins have a pathological gain of 
function with a subsequent neuronal toxic effect. In these 
cases, there may be an anticipation phenomenon, which is 
characterized by increasingly early onset of symptoms as 
the disease is transmitted from one generation to the next. 
Clinically ADCA are progressive neurodegenerative diseases 
that share cerebellar ataxia as the core symptom, associ-
ated with progressive cerebellar atrophy. However,  other 
brain regions, such as the brainstem, may also be 
involved. Within  this group, we will herein emphasize the 
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spinocerebellar ataxias (SCA), often used as a synonym for 
autosomal dominant ataxias.

The SCA has a wide range of neurological symptoms, 
including gait and appendicular ataxia, dysarthria, oculomo-
tor abnormalities of cerebellar and supranuclear origin, reti-
nopathy, optic atrophy, spasticity, extrapyramidal, peripheral 
neuropathy, sphincter disorders, cognitive changes, and epi-
lepsy1,2,3. Clinical diagnosis is challenging due to large phe-
notypic and genotypic variability. To facilitate clinical eval-
uation, Harding et  al. suggested a classification into three 
subtypes: ADCA type 1, characterized by cerebellar ataxia, 
optic atrophy, ophthalmoplegia, extrapyramidal symptoms, 
pyramidal signs, peripheral neuropathy, amyotrophy and 
dementia; ADCA type 2, when CA is associated with retinal 
degeneration; ADCA type 3, composed of “pure” cerebellar 
ataxias4 (Table 1). Currently, the classification of SCA is based 
on the identified mutation/expansion, also known as clini-
cal-genetic classification5. Forty-eight SCA subtypes have 
been described to date6,7,8 and this number tends to grow in 
the following years, thanks to the availability of new DNA 
sequencing techniques. Table 2, adapted from a review from 
Sullivan et al.6, shows the main clinical characteristics of each 
SCA subtype.

In this review, we will address the challenges in diagno-
sis of spinocerebellar ataxias, the recent diagnostic tools that 
are helpful when we have a patient with negative DNA test 
(herein called “negative ataxias”) and future perspectives in 
the field.

EPIDEMIOLOGICAL CONTEXT

The prevalence of hereditary ataxias in general has been 
little studied. A meta-analysis by Ruano et al.9, which included 
22 studies from 16 countries with more than 14,500 patients, 
showed that the average prevalence of ADCA is 2.7/100,000. 
However, it is worth mentioning that this prevalence is vari-
able in different regions. International studies have been con-
ducted to assess the prevalence of ADCA around the world. 
A prevalence of 3/100,000 cases was found in the Netherlands10, 
4.2/100,000 in Southern Norway11 and 5.6/100,000 in Portugal12. 
In all studies, spinocerebellar ataxia type 3 (SCA3 or Machado-
Joseph disease) is the most commonly mutation found.

In Brazil it is believed that the great epidemiological vari-
ability is due to the founder effect of different geographical 
regions3,12,13,14,15,16. Worldwide, several epidemiological stud-
ies have demonstrated a higher frequency of SCA 1 in coun-
tries such as Italy and India; SCA 2 in Mexico, Cuba, India and 
Canada; SCA 6 in Australia and Canada; SCA 8 in Finland, 
and DRPLA in Japan (Table 3)2,11,12,13,14,15,16,17,18,19,20. The main 
subtype found in Brazil is SCA3, and cases of SCA 1, 2, 6, 7 and 
10 occur less frequently; other types are considered very rare. 
Jardim et  al.21 conducted a research on ADCA in Southern 
Brazil evaluating 66 cases of SCA. The authors concluded that 
the proportion of cases of SCA 3 was very high, suggesting an 
Azorean founding effect. The frequency of SCA 3 in the region 
was 1.8/100,000, versus 0.2/100,000 for other forms of auto-
somal dominant ataxia. Cintra et al.22 found an even higher 
prevalence in the region of São Paulo, 5/100,000, considered 
to date the highest prevalence of SCA 3 found in Brazil. In a 
study with 104 families with SCA, Teive et al.23 found a high 
prevalence for SCA 3 (72.46%) followed by SCA 10 (11.6%). 
Braga-Neto et al.24 evaluated 45 families from the Northeast 
of the country with ataxia and identified a high consanguin-
ity rate (40.7%). In this series, a higher prevalence of recessive 
autosomal ataxias (33.3%) was identified compared to domi-
nant autosomal ataxias (6.6%), in contrast to other Brazilian 
epidemiological studies. However, epidemiological studies 
from the north of the country are scarce, and further studies 
are needed to assess the prevalence of hereditary ataxias in 
other regions of the country. Table 4 shows the frequencies of 
SCA in the Brazilian territory21,22,23,25,26,27,28,29,30,31.

Table 1. Autossomal dominant cerebellar ataxia clinical 
classification.

ADCA 1 SCA 1-4, 8, 12-14, 15, 17-22, 25, 27, 28, 31,  
32, 34-37, 38, 42-44, 46-48, DRPLA, DNMT1

ADCA 2 SCA 7

ADCA 3 SCA 5, 6, 10, 11, 23, 26, 30, 37, 41, 45

Source: adapted from Sullivan et al.6

ADCA: autossomal dominant cerebellar ataxia; SCA: spinocerebellar 
ataxia; DRPLA: dentatorubral-pallidoluysian atrophy; DNMT1: DNA 
methyltransferase.

Table 2. Phenotype characteristics of each spinocerebellar ataxia.

Associated clinical features Genetic subtypes

Peripheral neuropathy 1, 2, 3, 4, 18, 25, 38, 43, 46

Pyramidal signs 1, 3, 7, 8, 10, 14, 15, 17, 35, 40, 43

Dystonia 3, 14, 17, 20, 35

Myoclonus 14

Parkinsonism 2, 3, 10, 14, 17, 19/22, 21

Tremor 12, 15, 27

Chorea 17, 27, DRPLA*

Cognitive impairment 2, 8, 13, 17, 19/22,  
21, 36, 44, 48, DRPLA

Psychiatric symptoms 2, 17, 48

Ophthalmoplegia 2, 3, 28, 40

Visual impairment 7

Face/tongue fasciculation 36

Ichthyosiform plaques 34

Seizures 10, 19/22, ATN 1**

Narcolepsy DNMT1***

Hearing loss 31, 36, DNMT1

Source: adapted from Sullivan et al.6

*dentatorubral-pallidoluysian atrophy; **atrophin-1; ***DNA methyltransferase.
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MOLECULAR DIAGNOSTIC CHALLENGES IN ADCA

The diagnostic investigation of patients with ADCA 
involves PCR (polymerase chain reaction) technique, and is 
based on in-vitro amplification of specific regions of the DNA, 
allowing the detection of nucleotide expansions, which are 
the substrate for the most common ADCA worldwide9,10,14,22,25. 
Approximately 30% of the patients investigated for ADCA by 
the conventional method (PCR) have negative results.

The absence of a diagnosis can be very frustrating for 
both the patient and the physician. Obtaining a diagnosis 
can be an important factor of psychological impact, prog-
nosis, genetic counseling, preimplantation genetic diagnosis 
and family diagnosis. In addition, it may be essential for the 
development of specific treatments based on a better under-
standing of the mutation32. 

When initial DNA investigation fails, the next step would 
be to conduct a gene-to-gene search, which is considered 
a time-consuming and expensive method. But nowadays, 
with the fantastic advance in the development of molecular 

genetic techniques, with next-generation sequencing (NGS) 
technology, it is possible to carry out sequencing of several 
genes simultaneously, saving time and costs. Each NGS tech-
nique has its advantages and disadvantages, which must be 
weighed to choose the ideal method for the diagnosis.

GENETIC TECHNOLOGY EVOLUTION:  
SOLUTION OR ADDITIONAL PROBLEMS?

In 1977, Frederick Sanger and colleagues developed a 
DNA sequencing method based on chain-termination inhibi-
tors. In this method, a DNA template is replicated using a 
primer and a DNA polymerase that incorporates dideoxynu-
cleotides in the sequence synthesis, causing its early termi-
nation. After multiple reactions, DNA fragments of different 
lengths are formed and can be read by an automated appara-
tus, providing DNA sequencing33.

Compared to Sanger sequencing, considered a gold stan-
dard for genetic sequencing, NGS is capable of sequencing 

Country n SCA1 SCA2 SCA3 SCA6 SCA7 SCA8 SCA 10 SCA 12 SCA14 SCA 17 DRPLA und. References

Mexico 108 ND 45,4 12 ND 7,4 ND 13,9 ND NR 2,8 ND 18 Alonso et al.15

Portugal 199 ND 2,5 80,5 <1 1,25 1 ND ND <1 <1 8,5 26,5* Coutinho et al.12

Cuba 177 ND 86,8 1,2 ND ND NP NP NR NP ND ND 12 Velázquez et al. 200916

Italy 225 21 24 <1 <1 <1 <1 ND ND NP <1 <1 41 Brusco et al.14

Australia 88 16 6 12 17 2 NP NP NR NP NP ND 41 Storey et al.13

China 85 4,7 5,9 48,2 ND ND NP NP NR NP NP ND 41,2 Tang et al.17

Japan 
(Honshu) 101 ND 5,9 33,7 5,9 NP NP NP NR NP NP 19,8 ? Watanabe et al.18

Finland 49 4 2 ND 2 12 18 ND ND NP 2 ND 61 Juvonen et al. 19

Germany 77 9 10% 42 22 NP NP NP NR NP NP NP 17 Schöls et al.2

Norway 48 <1 <1 <1 ND NP NP NP NR NP NP NP 92 Erichsen et al.11

India 77 15,6 24,7 2,6 ND 2,6 ND NP 6,5 NP NP ND 48 Srivastava et al.20

Table 3. Prevalence of spinocerebellar ataxias across the world.

Results are displayed in percent. ND: not detected; NP not performed; und.: undetermined; *of 174 undiagnosed patients, only 87.3% (152 patients) underwent 
the adopted genetic test, resulting in 26.48% of patients with unidentified mutations.

Table 4. Prevalence of spinocerebellar ataxia in Brazil.

Reference n SCA1 SCA2 SCA3 SCA6 SCA7 SCA 8 SCA10 SCA12 SCA17 DRPLA und.

Silveira28 67 5% NP 55% NP NP NP NP NP NP 2% 61,20%

Lopes-Cendes29 54 6% 9% 44% NP NP NP NP NP NP NP 40%

Jardim21 52 ND ND 92% ND 2% * NP NP NP ND 6%

Trott30 114 ND 4,40% 84,20% 1,80% ND NP 1,80% NP ND ND 6%

Freund31 115 ND 5,20% 21,70% 0,80% 2,60% NP NP NP NP NP 69,50%

Teive23 104 2,90% 7,20% 72,50% ND 4,30% NP 11,60% NP NP NP 33,70%

Cintra22 150 6% 3% 81% 1,50% 7% 0,80% 0,80% NP NP NP 12,70%

Castilhos25 359 5,20% 7,80% 59,60% 1,40% 5,60% NP 3,30% ND ND ND 18,10%

Teive26 460 4.3% 6.5% 45.7% 0.6% 1.8% NP 18.3% NP NP NP 22.8%

Braga-Neto27 487 4,30% 11,50% 53,60% 1,20% 4,50% NP 2,20% 0,20% ND 0,20% 22.3%

und.: undetermined.
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several genes (or DNA templates) simultaneously, provid-
ing a large amount of information in an accurate and fast 
way, whereas Sanger sequencing, despite being reliable, can 
sequence only one gene at a time, making investigation time-
consuming and costly34.

When one suspects of SCA and performs a DNA test such 
as Whole Exome Sequencing (WES), about 64% of the diag-
noses made by this method are from mutations traditionally 
known to be responsible for causing hereditary ataxias, while 
30% are from newly discovered genes and 6% from genes that 
were not typically considered to cause ataxia35.

In practical terms, NGS can be employed in three ways: 
•	 Targeted sequencing panels (TSP), considered the most 

cost-effective approach, involving the analysis of a 
restricted number of genes in coding regions (exons).

•	 WES, where there is analysis of all coding regions of 
the human genome, site of about 85% of all pathogenic 
variants.

•	 Whole genome sequencing (WGS), considered to be the 
most expensive method yet capable of detecting muta-
tions in coding (exons) and noncoding (introns) regions, 
as well as copy number variations (CNV)33,36.

The excess information provided by these methods can 
also be a trap. Sometimes variants detected in WES may not 
necessarily be related to the patient’s disease, representing 
incidental and/or non-specific findings. The latter, also known 
as variants of unknown significance (VOUS), represent vari-
ants of a gene found in genetic testing without a known func-
tional or health consequence to the proband. The former rep-
resents pathogenic mutations related to other diseases not 
related to the investigated ataxia, such as the identification 
of a mutation in the BRCA gene 1 related to breast and ovar-
ian cancer, but not to ataxia. In these cases, it is important to 
explain to patients and obtain a consent form on the possible 
risks associated with the incidental findings of genes predis-
posing to other potentially serious diseases37,38 before starting 
the genetic test. In this context, it is important to highlight the 
need of gathering clinical data to determine the most likely 
types of SCA to be investigated in a specific patient5. 

Other limitations of WES are: failure to effectively iden-
tify nucleotide repeat expansions (the major cause of SCA), 
as well as mutations in GC-rich regions, mitochondrial DNA 
variants and copy number variations (CNV). They are also 
subject to sequential reading errors and technical problems 
such as insufficient depth and coverage34. 

Thus, the current recommendations are to search for 
nucleotide repeat expansions most associated with SCA by 
the PCR technique initially, taking into account the pheno-
type and epidemiological contexts. However, after ruling out 
this as a cause, another 70 genes associated with different 
forms of ataxias may be involved39. Therefore, if the initial 
results are negative, alternative methods for diagnosis, such 
as NGS, should be considered.

THE USE OF NEXT GENERATION  
SEQUENCING: EVIDENCE OF LITERATURE

Recent studies have shown encouraging results of 
NGS when confirming diagnosis in patients with heredi-
tary ataxia. Pyle et  al.40 found pathogenic variants in 41% 
of patients without diagnosis in 22 families, using the WES 
method. Efficacy  was similar between patients with early 
onset (<20 years) and late onset (>20 years). Although there 
was criticism of this study41, it revealed the potential impact 
of WES in patients with hereditary ataxias at any age.

In contrast, Németh et al.41 showed that the TSP method 
identified 18% of cases in a similar cohort. Larger sequencing 
of the genome is the likely explanation for the superior results 
of the study by Pyle et  al. Since it allowed the detection of 
mutations in genes that, although known to cause ataxia, are 
not considered “ataxia genes” and are therefore not usually 
included in the gene panels39,41. 

Meanwhile, Fogel et al.42 used WES and identified a per-
centage similar to that found by Németh, with 21% of cases 
identified (16/76) in patients with late-onset cerebellar 
ataxia, predominantly sporadic.

In a prospective study with patients with progressive cer-
ebellar ataxia, Hadjivassiliou et al.43 investigated 146 patients 
with TSP and identified mutation in 32% of cases. In another 
study with 412 patients with a negative molecular diagno-
sis of ataxia, Coutelier et al.44 performed TSP combined with 
PCR, finding relevant genetic variants in 14.3% of the cases. 
The same group carried out another study with 319 patients 
with cerebellar ataxia, with no history compatible with auto-
somal dominant pattern and undiagnosed, using WES45. 
Relevant genetic variants were identified in 28.5% of the 
cases (22.6% with definitive diagnosis and 6% with a pos-
sible pathogenic variant). In this cohort, younger patients 
(<25 years) with a history of consanguinity were associated 
with better chances of diagnosis, which had been previously 
demonstrated46,47,48. Table 5 summarizes the main mutations 
found in these studies40,41,42,43,44,45.

Authors Genes mutations

Coutelier 
et al.44 

CACNA1A (16 cases); Del. ITPR1(11 cases);  
SPG 7 (9 cases), AFG3L2 (7 cases)

Hadjivassiliou 
et al.43

CACNA1A (11 cases), PRKCG (5 cases),  
SPTBN2 (4 cases), SPG 7 (4 cases)

Coutelier 
et al.45

SPG 7 (14 cases); SACS (8 cases); SEXT 
(7 cases), SYNE 1 (6 cases), CACNA1A (6 cases)

Németh et al.41 SEXT (2 cases), TTBK2 (1 case), PRKCG 
(1 case), MRE11A (1 case), SACS (1 case)

Fogel et al.42 SYNE 1 (3 cases), SPG 7 (2 cases)

Pyle et al.40 SPG 7 (3 cases), SACS (3 cases),  
NPC1 (2 cases), TUBB4A (2 cases)

Table 5. Main mutations found with next-generation 
sequencing technology.
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These studies have demonstrated that NGS technologies 
play a crucial role in the diagnosis confirmation of ADCA, 
leading not only to a decrease in the time of diagnosis of 
patients, but also in the correlation of the genotypic-phe-
notypic spectrum, a source of discovery of new genes that 
cause ataxia, whether unpublished49 or not previously associ-
ated with ataxia39. It is important to point out that the studies 
have heterogeneous populations, and a comparison between 
them may be statistically inappropriate.

STRENGTHS AND PITFALLS OF WHOLE EXOME 
SEQUENCING AND TARGET SEQUENCING PANEL

TSP are considered a faster and cheaper method when 
compared to WES, the former representing a useful tool to 
identify mutations outside the exons, decreasing VOUS and 
incidental findings, which are important limitations of WES. 
In addition, it provides more concise information, which 
can be complemented with confirmatory methods, such 
as Sanger’s sequencing, which fills any data gaps unread 
by TSP33. The great limitation of TSP method is the need to 
formulate a genetic panel compatible with the phenotype 
and family history presented by the patient, which depends 
exclusively on previously reported clinical findings for the 
selection of genes, which may allow the escape of more rare 
genes, linked to atypical presentations or new mutations35,42. 
In addition, new TSP designs are needed as new genes 
are described.

On the other hand, in WES there is a broad genetic eval-
uation, without the need for previous clinical information. 
This allows the discovery of novel genotypic-phenotypic 
associations, extension of the phenotypic spectrum of a 
particular gene or recognition of very rare diseases or new 
mutations39. In addition, it can detect about 100-fold more 
genes compared to the mean detected by diagnostic pan-
els (100–200 genes). It is an excellent tool for patients with 
hereditary ataxia, considering the great phenotypic and gen-
otype heterogeneity of these patients43.

Another advantage of WES is the possibility of reanalysis 
of the previously obtained data as new genes are discovered 
and disseminated in the scientific community, enabling a ret-
rospective diagnosis34 and reducing time and costs compared 
to TSP.

Among the problems related to WES we can mention: 
•	 Poorly effective for the diagnosis of nucleotide replica-

tions, mutations in GC-rich regions, variants in mito-
chondrial DNA, structural variations of DNA, mutations 
in non-coding regions (intronic mutations).

•	 Incidental and undesired finding of genetic mutations 
predisposing to cancer, Alzheimer’s or other degenerative 
diseases.

•	 Generation of large number of variants, which requires 
the sequencing of family members to “filter” variants of 

uncertain meaning, reducing specificity and increasing 
the cost of the procedure.

•	 To establish a genotypic-phenotypic relationship of a new 
or non-associated variant prior to ataxia through bioin-
formatics processing, which may be highly complex.

•	 Technical problems, such as reading errors, coverage and 
insufficient depth — the most commonly problem asso-
ciated with loss of variant detection — may compromise 
results34,40,41,50. 

WGS is a method that was restricted to research centers, 
however, it has been more and more used in the routine of 
genetic laboratories worldwide. It is known that WGS has a 
much broader coverage of coding regions compared to WES, 
as well as covering non-coding regions. However, the amount 
of information generated may require a lot of time for analy-
sis, considered highly complex, and the cost is much higher 
than WES. Also, WGS have the same limitation of WES and 
TSP in detecting repeat expansions50. Figures 1, 2 and 3 sum-
marize the main advantages and disadvantages of the NGS 
methods34,35,36,39,42,45,47,50,51.

It is important to note that although some studies points 
WGS to be a cost-effective approach46, it is still an expensive 
and unavailable method for most patients in Brazil.

SHORT TANDEM REPEAT  
EXPANSIONS AND NGS: SOLUTIONS

As mentioned throughout the text, NGS methods are not 
suitable for STR identification. This is due to the fact that 
currently available methods perform short readings (about 
150bp per reading) and the STR expansions responsible for 
SCA, with few exceptions, usually have expansions that go 
beyond this limit.

In order to solve this problem, in recent years analysis 
methods have been developed, such as ExpansionHunter52, 
exSTRa53, STRetch54 and TREDPARSE55, which applied 
together with NGS, are capable of detecting STR expansions 
where the expanded allele size is greater than the length of 
standard short-read sequencing reads.

In the past, there were other detection methods for STR, 
such as HipSTR and LobSTR, but both have the limitation of 
detecting only STR alleles with repeat lengths smaller than 
the read length employed in the sequencing. All methods 
except exSTRa perform better when are applied to a WGS 
platform, preferably PCR free, where library preparation pro-
tocols yield the best data to allow repeat expansion detec-
tion, although platforms such as WES provide enough data 
to detect expansions in STR loci.

Dashnow et al demonstrated the use of STRetch in four 
patients without diagnosis after screening for most common 
expansions (SCA1-3, SCA 6, SCA 12, SCA 17 and DRPLA) 
and use of WGS screening for SNV. STRetch was capable of 
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Figure 1. Whole exome sequencing34,35,36,39,42,45,47,50,51.

Figure 2. Target sequencing panel34,35,36,39,42,45,47,50,51.
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identifying a SCA 8 expansion in one patient, confirmed by 
PCR56. Tankard et al. compared all four methods in different 
NGS platforms for detection of expansions of tandem repeat, 
and showed good sensitivity and specificity for all of them 
(>87 and >97%, respectively, when the methods were applied 
with WGS PCR free platform) and none of them were better 
than the other, suggesting that the use of all existing meth-
ods could be advantageous, improving the accuracy of the 
results57. Each of these alternative methods has its own tech-
nical advantages and disadvantages that goes beyond the 
scope of this review and must be seen elsewhere.

Although these techniques can detect novel repeat 
expansions, all of them rely on a priori knowledge of STR 
loci to be examined, that can be assembled by using annota-
tion of STRs from Tandem Repeats Finder results. Hence, de 
novo mutation cannot be detected by these techniques 
yet. Furthermore, some STR loci are poorly captured due to 
their extreme GC content, such as repeat expansions alleles 
underlying FRAXA (FMR1), FRAXE (FRM2) and FTDALS1 
(C9orf72). Despite these limitations, several authors recom-
mend their implementation in routine screening with NGS58.

It’s important to remember that gold-standard tech-
niques for diagnosis of STR expansion, such as Southern 
blots and TP-PCR (Tripled Primed PCR) shouldn’t be aban-
doned. The new NGS technique are considered screening 
methods, requiring validation with gold-standard methods. 

Southern Blot or TP-PCR are still the most accurate methods 
for detecting STR expansions and the size of the expanded 
allele, including whether there are interruptions, which has 
prognostic implications for age of onset, disease progression, 
and outcome57,58.

LONG READ SEQUENCING: A FUTURE NOT SO DISTANT

Sometimes even after extensive investigation with NGS 
short-read technologies the diagnose remains unknown. 
This is particularly true in cases with complex expanded 
alleles58,59, where the repeat may be interrupted multiple 
times. In this case, long read sequencing could be useful. 
These technologies, such as PacBio and Nanopore sequenc-
ing are gaining notoriety and drawing interest in bioinfor-
matics. Readings  can reach tens of thousands in compari-
son with few hundreds in short-readings NGS. Rather than 
estimating an STR expansion, the LRS will capture the entire 
expanded allele in a read fragment, providing more accu-
rate information about that expansion. While encouraging, 
LRS is still considered very expensive (about 10x more com-
pared to conventional NGS methods) and is therefore not 
cost effective for routine use57,58. However, this should change 
soon when LRS will be a valuable tool for the diagnosis of 
Mendelian diseases such as ADCA.

Figure 3. Whole genome sequencing34,35,36,39,42,45,47,50,51.
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CONCLUSION

Hereditary ataxias are a complex group of diseases from 
a clinical and genetic point of view. About 30% of patients 
with ADHA remain undiagnosed after an initial investiga-
tion into the most common gene variants. Guidelines for the 
investigation of SCA recommend that the initial investiga-
tion be done according to the phenotypic characteristics and 
family history, which may favor one type of SCA compared 
to others60,61. 

Although there are limitations, studies have shown that 
the use of NGS may be useful in the investigation of patients 
with undiagnosed ataxias. The most common mutations 
related to SCA are due to the expansion of nucleotides, which 
is a limiting factor in NGS technologies. However, in the con-
text of a negative molecular diagnosis of ataxias, several other 

molecular variants such as deletions, missense, nonsense 
and splice mutations (SCA 5, 11, 13, 14, 15/16 and 27), muta-
tions in non-coding regions (SCA 8,10 and 12) or mutations 
associated with other diseases such as spastic paraplegias, 
recessive ataxias, and channelopathies, may be responsible. 
In these cases, and NGS have proven effective in accelerating 
the diagnostic process.

Furthermore, new techniques for detections of STR expan-
sions with NGS, such as exSTRa, STRetch, ExpansionHunter 
and TREDPARSE, are proving to be valuable tools in diagnos-
ing STR related diseases, which includes SCA56,57,58. Long read 
sequencing it’s another promising diagnostic method for 
mendelian diseases, but it’s not widely available and it’s too 
expensive for routine use in clinical practice.

The unbridled evolution of neurogenetic research may 
answer many current questions soon enough.
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