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A Noncoding Expansion in EIF4A3 Causes
Richieri-Costa-Pereira Syndrome,
a Craniofacial Disorder Associated with Limb Defects

Francine P. Favaro,1,10 Lucas Alvizi,2,10 Roseli M. Zechi-Ceide,1 Debora Bertola,2 Temis M. Felix,3

Josiane de Souza,4 Salmo Raskin,5 Stephen R.F. Twigg,6 Andrea M.J. Weiner,7 Pablo Armas,7

Ezequiel Margarit,7 Nora B. Calcaterra,7 Gregers R. Andersen,8 Simon J. McGowan,9

Andrew O.M. Wilkie,6 Antonio Richieri-Costa,1 Maria L.G. de Almeida,1 and Maria Rita Passos-Bueno2,*

Richieri-Costa-Pereira syndrome is an autosomal-recessive acrofacial dysostosis characterized by mandibular median cleft associated

with other craniofacial anomalies and severe limb defects. Learning and language disabilities are also prevalent. Wemapped themutated

gene to a 122 kb region at 17q25.3 through identity-by-descent analysis in 17 genealogies. Sequencing strategies identified an expansion

of a region with several repeats of 18- or 20-nucleotide motifs in the 50 untranslated region (50 UTR) of EIF4A3, which contained from 14

to 16 repeats in the affected individuals and from 3 to 12 repeats in 520 healthy individuals. A missense substitution of a highly

conserved residue likely to affect the interaction of eIF4AIII with the UPF3B subunit of the exon junction complex in trans with an

expanded allele was found in an unrelated individual with an atypical presentation, thus expanding mutational mechanisms and

phenotypic diversity of RCPS. EIF4A3 transcript abundance was reduced in both white blood cells and mesenchymal cells of RCPS-

affected individuals as compared to controls. Notably, targeting the orthologous eif4a3 in zebrafish led to underdevelopment of several

craniofacial cartilage and bone structures, in agreement with the craniofacial alterations seen in RCPS. Our data thus suggest that RCPS is

caused bymutations in EIF4A3 and show that EIF4A3, a gene involved in RNAmetabolism, plays a role in mandible, laryngeal, and limb

morphogenesis.
Richieri-Costa-Pereira syndrome (RCPS [MIM 268305]) is

an autosomal-recessive syndrome characterized by a

midline cleft mandible in addition to Robin sequence,

laryngeal abnormalities, and radial and tibial deficiencies

associated with clubfeet1 (Figure 1). Learning and language

disabilities have been reported in more than 50% of the

affected individuals.1 All but one of the RCPS-affected

families described to date are from Brazil, suggesting a

founder effect.1 Previous attempts to identify the genetic

cause of RCPS were unsuccessful,2 possibly because the

causative mutation is ancient and the shared flanking re-

gion has been reduced by multiple recombinations. We

performed homozygosity mapping analysis with the

Affymetrix 50K Xba1 SNP array in seven individuals

belonging to four consanguineous families (Table S1 avail-

able online, individuals 1, 5–7, 9, 12, and 19 and Figure S1)

and one unaffected sibling for each of the probands 6, 9,

and 19.1 Although these families came from the same

geographic region, they have no knowledge of shared

ancestry. Approval for research on human subjects was

obtained from the ethics committee of the HRAC-USP-

Bauru. All samples were collected after individuals or their
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relatives had provided informed consent. The region of

homozygosity was selected with the Homozygosity

Mapper online program assuming a rare-recessive model

of inheritance. The only extended region of homozygosity

unique to affected individuals was observed at 17q25.3

(Figure S1). This region was further genotyped with 9

microsatellite markers and 10 SNPs (Table S2) in 20

affected individuals from 17 apparently unrelated families

and 46 unaffected relatives (31 parents and 15 unaffected

siblings). LOD scores were estimated by the Merlin3

software under a parametric model including data from 8

families (families of the probands 2–5, 7, 9, 10, and 13).

Segregation analysis with the above-mentioned markers

confirmed linkage to 17q25.3 (Figure S2; maximum LOD

score: 9.533 at q ¼ 0.0 for marker rs2289534). Additional

recombinants at rs2289534 (patients 8 and 17) and

rs3829612 (patient 11) (Figure S1B) refined the disease

locus to a 122 kb region (UCSC Genome Browser human

reference genome build hg19, chr17: 78,039,369–

78,161,152) containing CCDC40 (MIM 613799), GAA

(MIM 606800), EIF4A3 (MIM 608546), and CARD14

(MIM 607211). Mutations in GAA cause glycogen storage
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Figure 1. Clinical and Radiographic Aspects of Typical and
Milder Forms of RCPS
(A–D) Affected individual 2 at 9 years of age, illustrating (A, B)
typical facial features of the syndrome including micrognathia

The Amer
disease type II (GSD2 [MIM 232300]), and therefore GAA

was excluded as candidate for RCPS. Most recently, hetero-

zygous mutations in CARD14 have been associated with

psoriasis (PSOR2 [MIM 602723])4 and biallelic CCDC40

loss-of-function mutations were associated with ciliary

dyskinesia, primary 15 (CIDL5 [MIM 613808]).5 Because

there is no clinical overlap between the phenotypes in

RCPS and those above syndromes, EIF4A3 is the most

likely candidate for RCPS.

Except for exon 1 of EIF4A3, which proved difficult to

sequence, Sanger sequencing of the remaining exons of

EIF4A3, of all exons of CCDC40 and CARD14, and of their

exon-intron boundaries did not reveal any nonconserva-

tive coding substitutions or obvious splice site disruptions

(Table S3).Whole-exome sequencing (WES) was performed

in affected individual 17 according to previously standard-

ized protocols.6 WES revealed only seven homozygous

nonsynonymous changes not described in the available

SNP database at that time (NCBI dbSNP v.132) but none

of them mapped to 17q25.3.

By re-examining the WES data for the candidate region,

we found that exon 1 of EIF4A3 had low coverage (mean

coverage ¼ 3.6) compared to the other exons (mean

coverage of the remaining exons ¼ 17.2); in addition, the

EIF4A3 50 UTR is GC rich, which could explain our tech-

nical difficulties in sequencing this region. PCR amplifica-

tion of exon 1 showed a larger homozygous allele only

among affected individuals (Figure S3). This larger 50 UTR

allele was not observed in any of the 520 Brazilian control

individuals, further confirming its association with the dis-

ease. To better characterize the 50 UTR of EIF4A3, we

sequenced 140 control alleles from 70 unrelated Brazilian

individuals and discovered multiple allelic patterns, which

varied in size and organization of motifs containing 18 or

20 nucleotides (nt). These motifs could be divided in three

types: (1) a 20-nt motif, TCGGCAGCGGCACAGCGAGG,

termed CACA-20-nt; (2) a 18-nt motif, TCGGCAGCGG

CAGCGAGG, termed CA-18-nt; and (3) another 20-nt

motif that possessed a G instead of an A, TCGG

CAGCGGCGCAGCGAGG, termed CGCA-20-nt. The

most prevalent (97%) allelic pattern among controls was

characterized by an initial CACA-20-nt repeated between

2 and 9 times, followed by one CA-18-nt, another CACA-

20-nt, and one final CA-18-nt (total repeats ¼ 5 to 12),

ending 43 bases upstream of the first ATG (Figure 2). In

turn, affected individuals exhibited the following pattern:

an initial CACA-20-nt, followed by 12 to 13 repeats of

CGCA-20-nt, one CACA-20-nt, and one final CA-18-nt
and microstomia, (C) hypoplasia of fingers and clinodactyly, and
(D) absence of lower central incisors andmedianmandibular cleft.
(E) CT scan of the skull of affected individual 23 at 12 days of age.
Note the very rudimentary mandibular formation with large
medial cleft, micrognathia, and incomplete zygomatic arches.
(F–I) Affected individual 25, illustrating (F) absence ofmicrostomia
and presence of pectus excavatum, (G) short left hand with hypo-
plastic thumbs, (H) feet with characteristically abnormal shape,
and (I) normal fusion of mandible.
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Figure 2. Representation of the 50 UTR of EIF4A3 Alleles According to the Pattern of the Repeats and Their Distribution Frequency
(A–C) Three patterns of repeats in control alleles: note that the number of CA-18-ntmotifs varied among the different allele patterns and
that the CGCA-20-nt motif was present in only 1 out of 140 alleles.
(D–F) Three patters of repeats in affected alleles: the 15- and 16-repeat alleles have the same underlying structure (D, E), whereas the
14-repeat allele contains an additional copy of the CACA-20-nt motif (F).
(G) The nonexpanded 50 UTR in ciswith the nucleotide substitution c.809A>G (p.Asp270Gly) allele in individual 25 corresponds to one
of the patterns of the control individuals (A).
The first thymidine (T) at the 50 end corresponds to position þ38 of the transcription initiation site and the ATG corresponds to the
translation initiation codon. Underlined sequence downstream of the last 18-ntmotif represents a partially conservedmotif in all alleles.
(H) Distribution of the alleles per repeat size. Control sample alleles are shown in blue and affected alleles shown in red. The counting of
the alleles in affected individuals took into consideration relatedness.
(total number of repeats ¼ 15 or 16). To maintain clarity,

the identified alleles are hereafter referred by the absolute

number of repeats, which varied from 3 to 12 in controls

and were either 15 or 16 in these RCPS-affected indi-

viduals. We observed that 17 affected probands were

homozygous for the 16-repeat allele, and 3 apparently

unrelated affected individuals (6, 14, and 18; Figure S2)

were compound heterozygotes (15 or 16 repeats). All tested

parents were heterozygous for the 16-repeat allele, and

unaffected siblings either lacked the expanded allele or

were heterozygotes (Figure S2). Accordingly, the expanded

alleles segregated perfectly with the disease, following an

autosomal-recessive model.

Comparative analysis of the 50 UTR of EIF4A3 mam-

malian orthologs showed that only anthropoid primates,

which present mandible fusion as one of their morpho-

logical autapomorphies,7 share a repetitive sequence high-

ly similar to the human CA-18-nt motif (Figure S4). It is

thus possible that the most ancient allele in humansmight

have had one or few CA-18-nt motifs and that the 20-nt

motif has arisen more recently by a CA or, more rarely,

by a CG insertion. We speculate that an increased insta-
122 The American Journal of Human Genetics 94, 120–128, January 2
bility of the region is possibly being driven by the

CGCA-20-nt motif; however, current data are not suffi-

cient to predict the mechanisms responsible for the

appearance of the 16-repeat allele linked to the disorder.

Even though the 16-repeat allele seems to be relatively

stable through meiosis and to have a unique pattern of

organization, we classified this mutation as an expansion

and added RCPS to the growing group of disorders caused

by noncoding repeat expansions, which includes Frie-

dreich ataxia8 (FRDA [MIM 229300]), myotonic dystro-

phies9 (DM1 [MIM 60900]; DM2 [MIM 602668]),

fragile X-associated tremor/ataxia syndromes10 (Fragile

X syndrome [MIM 300624], FXTAS [MIM 300623]),

several spinocerebellar ataxias,11–14 and frontotemporal

dementia and amyotrophic lateral sclerosis15 (FTDALS

[MIM 105550]) (reviewed in Table S4).

EIF4A3 encodes a DEAD box helicase (eIF4AIII), the core

protein of the exon junction complex (EJC). It coordinates

the control of downstream processes of mRNA splicing and

nonsense-mediated mRNA decay (NMD) and is also

involved in rRNA biogenesis.16–20 eIF4AIII interacts

directly with mRNA and forms the minimally stable core
, 2014



Figure 3. Description of the Missense Mutation in EIF4A3, Evolutionary Comparative Analysis, and Structural Analysis
(A) Sequence analysis of exon 8 showing the A to G substitution at position c.809 (indicated by an arrow), leading to the amino acid
substitution p.Asp270Gly. The online tool PolyPhen-2 predicts this mutation as possibly damaging with a score of 0.860 (sensitivity:
0.72 and specificity: 0.89).

(legend continued on next page)
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of the EJC by interacting with Y14, MAGOH, UPF3,

MLN51, and RNPS1.21,22

Sequencing of EIF4A3 in five additional Brazilian

affected individuals ascertained elsewhere23,24 revealed

that four of them (individuals 21–24, including 2 siblings)

were homozygous for the 16-repeat allele. In contrast, the

fifth (individual 25) was a compound heterozygote, pos-

sessing a 14-repeat allele in transwith a nucleotide change,

c.809A>G (EIF4A3 transcript, RefSeq accession number

NM_014740.3), which leads to an amino acid substitution

at Asp270 (p.Asp270Gly) (Figure 3). The 14-repeat allele

showed a pattern of motifs distinct from that of the typical

16-repeat allele (Figure 2). These two mutations were not

identified in any database nor in our control sample (n ¼
520/expansion allele; n ¼ 285/substitution mutation).

Strong functional constraint of Asp270 was suggested by

its location in the C-terminal helicase RecA2 domain and

by its complete conservation not only in eIF4AIII ortho-

logs from seven divergent vertebrate species, plant, and

yeast but also in eIF4A paralogs (Figure 3). SIFT and

PolyPhen analyses predicted that Gly at position p.270

perturbs the structure and function of eIF4AIII (Figure 3).

The side chain of aspartate 270 forms a hydrogen bond

with Tyr429 in UPF3B (Figure 3), an EJC protein involved

in NMD,26–28 and mutation of this residue also affects

eIF4AIII recruitment by CWC22 to the spliceosome.29

Furthermore, glycine strongly destabilizes helices com-

pared to aspartate,25 so the helical structure downstream

of the mutated residue may also be affected (Figure 3C).

Together, these observations suggest that p.Asp270Gly is

probably pathogenic and that RCPS is caused by different

mutational mechanisms: expansion of the 50 UTR (14 to

16 repeats) or missense mutation.

The 15- and 16-repeat allele haplotypes spanning EIF4A3

are consistent with a common origin (Figures S2 and S5)

and corroborate our previous founder effect hypothesis

for most Brazilian RCPS-affected individuals. The 15-repeat

alleles might represent a retraction of the 16-repeat allele

or alternatively might have arisen by unequal crossing

over (Figure S2), as suggested in polyalanine expansion

disorders.30 The 14-repeat allele is embedded in the same

42 kb haplotype observed in the recombinant 16-repeat

alleles (Figure S5); however, its origin remains unclear

given its distinct motif organization and structure (Fig-

ure 2). In contrast, the c.809A>G mutation is embedded

in a distinct haplotype (Figures S2 and S5), suggesting

multiple pathogenic mutational origins in EIF4A3.
(B) Comparative sequence analysis of EIF4A3 encoded orthologous pr
highly conserved throughout evolution.
(C) Structure of the core human exon junction complex bound to a C-
view: the RNA and ATP binding eIF4A3 is shown with its RecA1 and R
MLN51 (magenta) encloses both RecA domains and also forms part o
both domains of eIF4AIII, the MLN51 fragments, and positions Y14
interacts with both Y14 and the eIF4AIII RecA2 domain. (ii) Clos
eIF4A3 RecA2 domain. Selected putative hydrogen bonds of relevan
(iii) Selected model of the glycine mutant with a secondary structure
(iv) Selected model of the glycine mutant with a disrupted secondar
eIF4AIII. Models were prepared with Modeler.25
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The phenotype of RCPS-affected individuals varies in

expressivity evenwithin families. Themain clinical cranio-

facial characteristic fully penetrant in all 16-repeat allele

homozygous or 15/16-repeat allele compound heterozy-

gous individuals is midline mandibular involvement,

ranging from abnormal fusion observed radiologically to

complete lack of fusion leading to a wide gap at the

mandibular symphysis (Figure 1 and Table S1).1 The three

affected compound heterozygous individuals for the 15/

16-repeat alleles presented a very similar phenotype to

the homozygous 16/16 affected individuals (Table S1). In

contrast, individual 25, who is a compound heterozygote

for a 14-repeat allele and c.809A>G (p.Asp270Gly), was

the only individual with mandible fusion (Table S1;

Figure 1). The milder phenotype in individual 25 might

be due to a weaker effect of the amino acid substitution

mutation or of the 14-repeat allele in comparison to

the 16-repeat allele. Atypical or milder phenotypes have

been associated with substitution mutations in Friedreich

ataxia,31 an expansion disorder with an autosomal-

recessive inheritance pattern (Table S4).

To further understand the functional effect of the

EIF4A3 expanded alleles, we first investigated EIF4A3 tran-

scripts. Through cDNA sequencing analysis, we showed

that the 50 UTR repeats are included in the EIF4A3 tran-

scripts from white blood cells from both controls and

affected individuals (data not shown). We did not observe

any evidence of EIF4A3 alternative splicing either in

controls or affected individuals (Figure S6). Next, we per-

formed real-time quantitative PCR (RT-qPCR) for EIF4A3

with mRNA obtained from white blood cells (four affected

and nine control individuals) and frommesenchymal cells

(2 affected and 11 control individuals) by standardized

methods.32,33 EIF4A3 transcript abundance was about

30%–40% lower in affected individuals than in controls

in both cell types tested (white blood cells, p ¼ 0.0193;

mesenchymal cells, p ¼ 0.001; Figure S6). It is likely that

the expanded allele does not alter the splicing of EIF4A3

mRNA but it seems to reduce its abundance in the RCPS

cell types investigated. Further studies, including quantifi-

cation of expressed protein in different cell types, will be

necessary to confirm whether this expansion represents a

partial loss-of-function mutation. We also cannot exclude

the possibility that this expanded allele leads to RNA

toxicity affecting other proteins, as has been shown for

full expansions at DMPK (MIM 605377) and at CNBP1

(MIM 116955).34 The substitution p.Asp270Gly is likely
oteins and its paralogs, showing that the Asp270 (highlighted D) is

terminal fragment of UPF3B (PDB entry 2XB2 for RCSB). (i) Overall
ecA2 domains colored blue and green, respectively. A fragment of
f the binding site for the 50 end of the RNA. MAGOH (red) contacts
(yellow) in the complex. The C-terminal UPF3B fragment (gray)
e-up on the UPF3B Tyr429 interaction with the Asp270 in the
ce for the Asp-Gly mutation are indicated with blue dashed lines.
similar to that of the experimental structures of wild-type eIF4AIII.
y structure compared to the experimental structures of wild-type

, 2014



Figure 4. Zebrafish eif4a3 Knockdown
via Morpholinos
Microinjected zebrafish embryos staged at
24 hr postfertilization (hpf) presented an
observable phenotype.
(A) Control embryo microinjected with
mispaired MO (TRA1-MO-Mis).
(B) Morphant embryo microinjected with
MO designed to block eif4a3-mRNA trans-
lation (TRA1-MO).
(C) Rescued embryo microinjected with
TRA1-MO and mRNA coding for eif4a3
fused to EGFP (eif4a3-EGFP mRNA).
Lateral views of embryos were registered
under stereoscopic microscope (whole
body at the upper left of each panel) or
with two different magnifications under
differential interference contrast micro-
scope (anterior-most region at the upper
and lower right of each panel). Alterations
in the morphants’ trunk were observed but
not reproducible and only phenotyping at
the craniofacial level was done. Dotted
lines mark regions between eyes (ey) and
otic vesicle (ov), which include the
midbrain-hindbrain border (MHB) and
showed darkened tissue inmorphants, sug-
gesting the presence of apoptotic cells.
Lateral views of 24 hpf embryos after acri-
dine orange staining, by standardized pro-
tocols,35 are shown in (A0) and (B0). Green
fluorescence panels in (C) show expres-
sion of eif4a3-EGFP in rescued embryo.
Scale bars represent 200 mm. TRA1-MO
sequence: TGTGACGGATTTCGGTGTAAA
TTAC. TRA1-MO-Mis sequence: TGTCA
CCGATTTCCGTCTAAAATAC.
to weaken the interaction between eIF4AIII and UPF3B,

thus resulting in a less-efficient NMD and transcriptional

or translation regulation. It is thus possible that the

mechanism behind the RCPS phenotype might be a partial

loss-of-function of EIF4A3 (hypomorphic mutation),

which would be the expected model considering the

autosomal-recessive inheritance pattern of the disease.

To further investigate the role of EIF4A3 in craniofacial

development as well as its deficiency as a putative mecha-

nism for RCPS, we modeled eif4a3 deficiency in zebrafish

embryos by using specific morpholinos (MO). Three

different MOs along with their corresponding mispaired

controls were purchased from Gene Tools (MO sequences

in Figures 4, S7, and S8). MOs were designed to block either

eif4a3 mRNA translation (TRA1-MO and TRA2-MO) or

eif4a3-pre-mRNA splicing (Spl-MO). Zebrafish embryos at

1–4 cell stage were injected with 5 nl of each MO at the

indicated concentration (ranging from 0.01 to 0.1 mM)

depending on the MO, and development was allowed to

proceed.35,36 Because a slight delay in morphant develop-

ment was observed, developing fish were staged taking

into account the presence of typical developmental struc-

tures. Morphants with consistent and reproducible cranio-

facial phenotypes were scored as a unique category (Table

S5 and Figures 4, S7, and S8). Similar craniofacial pheno-

types were observed regardless of the nature of the injected
The Amer
MO. Morphants staged at 24 hr postfertilization (hpf)

showed eyes reduced in size and dark and opaque zones

in all brain structures. In addition, the otic vesicle and

the midbrain/hindbrain border regions were barely detect-

able. Anomalies in the trunk and tail were observed in

some embryos, but these anomalies were not further char-

acterized because they were variable and inconsistent

among different MOs (Figures 4, S7, and S8). Acridine

orange staining37 performed on 24-hpf staged morphant

and control embryos suggested extensive apoptosis in

morphants in comparison to controls, which was even

more intense in the anterior-most regions of morphants

(Figures 4, S7, and S8). Cartilage and bone staining re-

vealed underdevelopment of craniofacial cartilage, bone

alterations, and clefting of the lower jaw (Figures 5, S7,

and S8). Furthermore, the third through sixth pharyngeal

arches were underdeveloped in morphants. Therefore,

morphant fish displayed multiple defects in craniofacial

structures analogous to those in RCPS-affected individuals.

Importantly, most of the abnormalities were rescued when

an in vitro synthesized mRNA encoding for the zebrafish

eIF4AIII translationally fused to EGFP was coinjected

with each of the three MOs tested (Table S5 and Figures

4, 5, and S7–S9). The TRA1-MO and TRA2-MO anneal on

two different regions of the 50 UTR and, thus, do not

anneal to the injected mRNA, ruling out MO off-targeting
ican Journal of Human Genetics 94, 120–128, January 2, 2014 125



Figure 5. Craniofacial Phenotype in Ze-
brafish eif4a3 Morphant Larvae
Five days postfertilization (dpf) larvae
microinjected with TRA1-MO-Mis (A–C),
TRA1-MO (D–F), and TRA1-MO þ eif4a3-
EGFPmRNA (G–I) were stained with alcian
blue36 to observe cartilage structures (A, D,
G, lateral views; B, E, H, ventral views) or
with calcein to observe bone structures
(C, F, I, ventral views). Eyes were removed
to register alcian blue-stained larvae.
Craniofacial precursors in morphant
larvae were severely affected showing
hypoplasia of numerous craniofacial carti-
lages (red lines), which is evident in the
rostral and jaw elements. Impairment of
pharyngeal arches development was also
observed (asterisks). Abbreviations are
as follows: cb1–5, ceratobranchial arches
1–5; ch, ceratohyal; ep/tr, ethmoid plate/
trabecula; m,Meckel’s cartilage; pq, palato-
quadrate. Scale bars represent 200 mm.
effects. Because craniofacial cartilage and bones mainly

derive from the cranial neural crest (CNC), we assessed

the expression of typical CNC marker genes in treated

and control 24-hpf staged embryos. RT-qPCR revealed

that eif4a3 knockdown adversely affects the transcription

of typical neural crest gene markers, such as sox9b, foxd3,

sox10, and tbx2 (Figure S10). Therefore, eif4a3 depletion

might result in failure of the EJC assembly, which

ultimately would lead to CNC cell death and underdevel-

opment of the pharyngeal arches.

In summary, our findings suggest that EIF4A3 deficiency

leads to abnormal development of most pharyngeal

arches, resulting in altered mandible and laryngeal

morphogenesis. Although not explored in this manu-

script, deficiency of EIF4A3 also interferes in limb develop-

ment and is associated with learning and language

disabilities observed in a high proportion of RCPS patients.

The altered neurodevelopmental phenotype in RCPS,

which should be further studied, is unsurprising given

the role of eiF4AIII in regulating transcription abundance

of neuronal effector genes that underlie learning and

memory processes.38,39 In addition, heterozygous dele-
126 The American Journal of Human Genetics 94, 120–128, January 2, 2014
tions of EIF4A3 associated with

intellectual disability and autism

have recently been reported.40 RCPS

belongs to the growing list of cranio-

facial syndromes caused by loss-

of-function mutations of genes

encoding proteins involved in RNA

metabolism and ribosome biosyn-

thesis, such as TCOF1 ([MIM

606847]; Treacher Collins syndrome,

TCS1 [MIM 154500]),41 SF3B4 ([MIM

605593]; Nager syndrome, AFD1

[MIM 154400]),42 and EFTUD2

([MIM 603892]; mandibular dysosto-

sis and microcephaly, MFDM [MIM
610536]).43 Apoptosis of CNC cells might be a common

mechanism underlying all these syndromes22,44. However,

considering the complexity of RNA metabolism, it is

possible that dysregulation of distinct pathways might

explain their specific phenotypes. Of these other syn-

dromes, only EFTUD2-mutated individuals present cogni-

tive impairment; notably, the U5-116-kD spliceosomal

GTPase protein encoded by EFTUD2 directly interacts

with eIF4AIII.22 Further studies will be necessary to inves-

tigate the functional relationship between EIF4A3 and

the above-mentioned genes and to understand how muta-

tions in EIF4A3 lead to the pleiotropic phenotype of RCPS.

Supplemental Data

Supplemental Data include ten figures and seven tables and can be

found with this article online at http://www.cell.com/AJHG/.
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Al-Sannaa, N., Annagür, A., Gillessen-Kaesbach, G., Hüning,
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