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Summary

Recent attempts to detect mutations involving single base changes or small deletions that are specific to genetic
diseases provide an opportunity to develop a two-tier mutation-screening program through which incidence of
rare genetic disorders and gene carriers may be precisely estimated. A two-tier survey consists of mutation
screening in a sample of patients with specific genetic disorders and in a second sample of newborns from the
same population in which mutation frequency is evaluated. We provide the statistical basis for evaluating the
incidence of affected and gene carriers in such two-tier mutation-screening surveys, from which the precision
of the estimates is derived. Sample-size requirements of such two-tier mutation-screening surveys are evaluated.
Considering examples of cystic fibrosis (CF) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD),
the two most frequent autosomal recessive disease in Caucasian populations and the two most frequent mutations
(AF508 and G985) that occur on these disease allele-bearing chromosomes, we show that, with 50-100 patients
and a 20-fold larger sample of newborns screened for these mutations, the incidence of such diseases and their
gene carriers in a population may be quite reliably estimated. The theory developed here is also applicable to
rare autosomal dominant diseases for which disease-specific mutations are found.

Introduction

For a large fraction of the 5,000 Mendelian diseases in
humans known thus far (McKusick 1992), the genes are
identified, and specific mutations causing the disease
have been detected. The incidence of a rare disease is
difficult to assess precisely, because other causes may
obscure the detection of affected individuals before
their death. Molecular techniques for detection of dis-
ease-specific mutations have the potential to ameliorate
this problem, although screening for specific mutations
does not generally detect all affected individuals. For
example, recently the cystic fibrosis (CF) gene has been
identified (Kerem et al. 1989), and it is known that,
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worldwide, nearly 70% of the CF allele(s) carry a dele-
tion mutation (AF508) at codon 508 of the CF trans-
membrane conductance regulator (CFTR) protein
(Cystic Fibrosis Genetic Analysis Consortium 1990).
This provides the opportunity to screen for this muta-
tion in newborns, from which the disease incidence in
the population may be predicted. Similar screening for
disease-specific mutations (base-pair changes or small
deletion) may also apply for estimation of incidences of
al-antitrypsin deficiency (Newton et al. 1989), sickle
cell anemia (Wu et al. 1989), phenylketonuria (Sommer
et al. 1989), apolipoprotein E (Wenham et al. 1991),
P-thalassemia (Old et al. 1990), medium-chain acyl-
CoA dehydrogenase deficiency (MCAD; Yokota et al.
1991), etc.

In all such cases, it is important to know the frequen-
cies of disease-specific mutations in a general popula-
tion, as well as the fraction of disease allele(s)-bearing
chromosomes that carry the disease-specific mutations.
For some of the diseases mentioned above, screening
surveys have accomplished this by comparing the fre-
quencies of disease-specific mutations on disease gene-
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bearing and normal chromosomes (e.g., see Cystic Fi-
brosis Genetic Analysis Consortium 1990; Romeo and
Devoto 1990). A two-tier sampling procedure should
also provide such information, when (1) one of the sam-
ples relates to mutation screening among a patient pop-
ulation and (2) in the other mutation screening is con-
ducted in the general population (newborns). The
purpose of this work is to determine the sample-size
requirement and to evaluate the precision of the esti-
mates for such two-tier screening programs. In addi-
tion, we derive the confidence intervals for each of
these parameters from which heterogeneity of inci-
dences in different populations may be evaluated. The
theory is illustrated with data on CF and MCAD, by
considering screening for the AF508 and G985 muta-
tions, which are specific for these diseases, respectively.

Theory
Consider an autosomal recessive genetic disease and

assume that the mutation (say, M) for which the screen-
ing survey is designed occurs only on the disease allele-
bearing chromosome. Let d be the true frequency of
the disease allele(s) in a population, so that d2 is the
frequency of affected individuals in the population, and
2d(1-d) is the frequency of carriers in the population.
Estimates and Their Standard Errors

In a sample of m patients, let m1 individuals be the
number of homozygotes (MM) for the mutation, m2
the number of heterozygotes (MM), and m3 the number
of homozygotes (MM) for the absence of the mutation.
The gene-count estimator of r, the proportion of the
disease alleles carrying the mutation M, is r = (2m1
+ m2)/2m, with a variance V(r) = r(1-r)/2m.

Similarly, in screening n newborns (whose disease
status is still unknown) for mutation M, let n1 individ-
uals be the carriers of the mutation M. The rarity of
disease in populations will generally yield no mutant
homozygote in a random sample of newborns from the
population. This screening survey results in a gene-
count estimator of a composite parameter, p = d. r.
The estimate of p (from allele counts) becomes fi = no/
2n, with the sampling variance V(>i) = p(l-p)/2n.

Thus, the estimate of the disease allele frequency is
given by

d= p/r, (1)

whose approximate sampling variance is (see Kendall
1947)

V(d) _ + ( )) (2)

We show below that this approximation is quite accu-
rate for the problem that we are considering.
Under the Hardy-Weinberg assumption, the disease

incidence in the population is estimated by d2, which
has an approximate sampling variance of

v(d2) - 4d2.v(d). (3)

Similarly, the carrier frequency in the population is esti-
mated by 2d(1-d), and its approximate sampling vari-
ance is

V[2d(1-d)] 4(1-2d)2. V(d) . (4)

The precision of these estimates may be judged by
their coefficient of variation. The estimators from dif-
ferent population samples may be contrasted by using
Rao's (1973) heterogeneity X2 analysis.

Confidence Intervals for Disease Incidence
and Carrier Frequencies
The standard errors derived above cannot be directly

used to obtain the confidence intervals of these parame-
ters, because, when d is small, the sampling distribution
of the estimates of d2 and 2d(1-d) are not symmetric
around their point estimates. Two approaches may be
considered to derive confidence-interval estimates of
the disease incidence, d2, and the frequency of carriers,
2d(1-d), in a population.

First, since the estimators of d2 and 2d(1-d) are

2= ( 1- .m
2

2m, m n / (8)

and

- n, M n, M)
2d(1-d) =2 (2 +W )n 2m- m )

(9)

their sampling distributions are uniquely specified by
those of n1 and (2m1 +m2), which are binomial variates
with parameters (2n,p) and (2m,r), respectively. Further-
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more, by the design of the study, n1 and (2m1 +m2) are
independently distributed. Therefore, the probability
of observing the point estimates (expressions [8] and
[9]) is

(2)*(ra nj * (1-rd)2n- *(2 )

1l 2m, +M2
* r2Mh+m2. (1-r)m2+2m3,

which can be computed for all combinations of
2m1+m2= 0, 1, 2,. ..,2m and n1 = 0, 1, 2,. .., 2n, for
any given value of rand d. By sorting the probabilities in
ascending order of values of the estimated d2 and
2d(1-d), we can obtain the lower and upper confi-
dence bounds for both estimators for any specified sam-
ple sizes m and n.

However, as the exact enumeration of confidence
bounds is tedious for large sample sizes, we may ap-
proach the confidence-interval evaluation for d2 and
2d(1-d) by considering their logarithmic transforma-
tion, which makes the point estimators almost symmet-
rically distributed around their expectations (Chakra-
borty et al. 1993). The 95% confidence interval of x
= en(d2) = 2en(d) is given by

x ± 1.96. {VGx)}1/2' (10)

in which V(x) 4. V(d)/d2, where V(d) is evaluated
from equation (2) by substituting the estimates for the
parameters. Once the confidence interval (CL, Cu) for x
is obtained from equation (10), a reverse transforma-
tion will generate the 95% confidence interval for the
disease incidence, given by (eL, e). By analogy,
the confidence interval for the carrier frequencies
may be obtained from a transformed parameter, y
=en[2d(1-d)], whose estimate is y = en[2d(l-d)]. Its
variance is

V(y) (1 - 2d)2. V(d)/[d2(1-d)2], (11)

so that an equation of form (10) will generate the confi-
dence interval for the incidence of gene carriers,
2d(1-d). Although the second approach involves ap-

proximations (asymptotic normality of the logarithmic
transformed sample statistics), we show in the sequel
that this simpler method is adequate when m is 25 or

more and n is at least five times larger than m.

Sample-Size Requirements
The above theory can also be used to determine the

minimum sample size for obtaining a given precision of
the point estimates. First, suppose that we would like to
estimate both d2 and 2d(1-d) with coefficient of varia-
tion not exceeding a certain fraction c (generally, c
= .25-.5 is an indicator of a precise estimate). From
equation (3), we obtain that the sample size for estimat-
ing the disease incidence in a population n should sat-
isfy

(1_-rd /(2 1r\ (12)

while, for estimating the incidence of disease-gene car-
riers (from eq. [4]), the sample size should satisfy

n >
- rd 2c2(1-d)2 m1- .
rd (1-2d)2 -mr /

(13)

Numerical calculations, shown below, suggest that,
for given values of parameters r and d, with any speci-
fied sample sizes n and m, the disease-gene carrier fre-
quency is more precisely estimated than is the disease
incidence.

Similarly, sample-size requirements may also be de-
termined from the confidence-interval estimation of d2
and 2d(1-d), by fixing the ratio of upper versus lower
confidence bounds, for a specified level of confidence.
Suppose that we wish to determine 95% confidence
bounds of d2 such that the ratio of the upper and lower
95% bounds remains less than a specified value, say R
(generally R = 2, 5, or even 10 may be regarded as
reasonable, since d2 is itself a small quantity). Substitut-
ing this into equation (10), we have

(>1 -rd )/(3(en R)2 - -r
n 1

rd j/ ~30.7328 mr
(14)

and an equivalent approach for estimating 2d(1-d)
yields

( rd J/(15.3664(1-2d)2 mr ) (15)

specifying the sample-size requirements with precisions
determined by their respective confidence bounds.
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Applications

The theory described above may be applied to

screening surveys for mutations specific to lethal auto-

somal recessive diseases such as CF and MCAD. While
both of these diseases are more common in Caucasian
populations, their precise incidences in different geo-

graphic regions are still unknown (Allan and Phelan
1985; Kolvraa et al. 1991; Yokota et al. 1991; Braeke-
leer and Daigneault 1992). Several specific mutations
that occur on the CF- and MCAD-bearing chromo-
somes are known. The most common mutation for CF
is the deletion of a phenylalanine residue at codon 508
(AF508) of the 1,480-amino-acid CFTR protein (Kerem
et al. 1989). CF incidence is roughly 1/2,500 live births
among Caucasians (Boat et al. 1989), yielding a gene

frequency of d = .02. Worldwide, the AF508 mutation
is present on approximately 70% of the CF chromo-
somes, giving a value of r = .70, although evidence of
geographic variation in d and r among different Cauca-
sian populations is abundant (Braekeleer and
Daigneault 1992). Incidence of the autosomal recessive
disorder of fatty-acid oxidation, MCAD, is less pre-

cisely known. Roughly 1/5,000 live births in Cauca-
sians in England results in this disorder (Bennett et al.
1987). Sudden deaths of children account for missing
occurrences of MCAD (Kolvraa et al. 1991; Yokota et
al. 1991). The above incidence value gives a value of d
=.014, although the exact gene frequency may be
smaller because of the inclusion, in the general survey,

of other rare inborn errors of fatty-acid oxidation (Ben-
nett et al. 1987). Yokota et al. (1990) discovered a point
mutation in the coding region of pMCAD cDNA, an

A-to-G transition at position 985 (called "G985 muta-

tion") that is specific to MCAD-bearing chromosomes.
About 90% of the disease-causing alleles in diagnosed
MCAD patients carry the G985 mutation (Yokota et al.
1991), giving a value of r = .90, even though this also
may vary in different Caucasian populations.

Tables 1 and 2 present the sample-size requirements
for estimating the disease incidence (table 1) and the
incidence of carriers (table 2) for these two diseases.
Each table gives the number of newborns (i.e., n) for
which mutation (AF508 and/or G985) screening is to

be attempted, for given values of m, the number of
patients from which the value of r is determined.

Three observations may be made from these compu-
tations. First, as the specificity r of the mutations for
disease-allele detection increases, the sample-size re-

quirement is less stringent. An increase of r from .50 to
.90 amounts to almost a 50% reduction in sample size n
for both disease-allele frequencies (d = .01 and .02),
irrespective of the value of m. This has important impli-
cations for the development of a two-tier mutation-
screening program, since, for both CF and MCAD,
other rare disease-specific mutations are known, and
there are attempts to develop a rapid and reliable ampli-
fication refractory mutation system (ARMS) for
screening programs (Ferrie et al. 1992) that improves
the specificity (i.e., increases the value of r). For r = 1
(100% specificity), a single-tier screening program in
newborns is sufficient, since in this case p = d.

Second, the contribution of the number of patients
m screened to the precision of estimates of d2 and
2d(1- d) is small even when r < 1. In other words, an
effective mutation-screening program may not require
surveying a large number of patients. As long as r > .5,
probably 100 patients (or fewer) are enough, and efforts
to increase the number of newborns n can greatly im-
prove the precision of estimates of incidences of disease
and gene bearers. Third, the sample size required for
estimation of the frequency of gene bearers is smaller
than what would be needed for estimation of disease
incidence for a fixed level of precision. Consequently,
when the sample-size requirement is established by con-
sidering the precision of the estimated disease inci-
dence, the precision of the estimate of gene carriers will
be comparatively much higher. This has an important
implication for applying this theory to other genetic
diseases, which will be discussed later.

Since tables 1 and 2 establish that the values of m, the
number of patients to be screened for mutations, have
relatively less impact on the precision of the estimates
of the incidences of disease and gene bearers, in figure 1
we present the upper and lower limits of 95% confi-
dence intervals for these parameters by exact evaluation
of the distributions of the estimates of d2 and 2d(1-d),
shown in equations (8) and (9). For these computations
we varied n, the number of newborns screened, as a
multiple (k) of m, so that n = km. All parameter values
chosen for these computations are applicable to either
CF and AF508 mutation screening, or MCAD and
G985 mutation screening.

These results indicate that, irrespective of the value
of m, not much improvement in the precision of the
incidences can be made by increasing n beyond a factor
(k) of 20, so that mutation screening for these diseases
may be effectively conducted with 50-100 patients and
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Table I

Sample-Size Requirement for Estimating Incidence d2 of an Autosomal Recessive Disease

VALUE OF n FOR

d=.01 d=.02

Coefficient of Variation of d2 Fixed at

r AND m 1/4 1/3 1/2 1/4 1/3 1/2

.50:
25 ..... . .. 13,772 2,342 ... 6,852 1,165
50 ...... 17,689 5,777 1,895 8,800 2,873 943
100 ...... 9,365 4,477 1,730 4,659 2,228 861
200 ...... 7,581 4,024 1,658 3,772 2,002 825

.75:
25 ...... 7,386 3,219 1,186 3,666 1,598 589
50 ...... 5,384 2,770 1,119 2,672 1,375 555
100 ...... 4,741 2,589 1,088 2,353 1,285 540
200 ...... 4,474 2,508 1,073 2,220 1,245 533

.90:
25 ...... 4,108 2,202 914 2,036 1,091 453
50 ...... 3,794 2,109 897 1,880 1,045 445
100 ...... 3,654 2,065 889 1,811 1,023 441
200 ...... 3,588 2,044 885 1,778 1,013 439

Ratio of 95% Confidence Limits of d2 Fixed at

2 5 10 2 5 10

.50:
25 ..... 4,494 1,502 . 2,236 748
50 ..... 3,096 1,305 . . 1,540 650
100 ..... 35,327 2,679 1,225 17,575 1,333 610
200 ..... 18,715 2,510 1,188 9,311 1,249 591

.75:
25 ..... 57,539 1,866 832 28,552 926 413
50 ..... 14,759 1,705 798 7,324 846 396
100 ..... 10,759 1,635 783 5,339 812 389
200 ..... 9,475 1,602 775 4,702 795 385

.90:
25 ..... 9,842 1,380 656 4,876 684 323
50 ..... 8,211 1,342 647 4,068 665 321
100 ..... 7,583 1,323 643 3,757 656 319
200 ..... 7,303 1,316 641 3,619 652 318

NOTE.-An ellipsis (...) indicates that no sample size will meet the prescribed precision.

1,000-2,000 newborns, in those populations where the
disease is not much rarer than 1/5,000.

Since in all of these computations we used the ap-
proximations suggested in equations (10)-(15), in table
3 we show the effects of these approximations. For
given parameter values r and d and sample sizes m and

n, we evaluated the 95% confidence-interval estimates
of the incidences of disease and gene carriers for rare

recessive disorders, by using the exact compound bino-
mial distribution of the estimates given in equations (8)
and (9) to compare them with the approximations.

These computations indicate that, for parameter val-
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Table 2

Sample-Size Requirement for Estimating Incidence of Recessive Disease Gene Carriers,
2d(l -d)

VALUE OF n FOR

d= .01 d= .02

Coefficient of Variation of 2d(1-d) Fixed at

r ANDm 1/4 1/3 1/2 1/4 1/3 1/2

.50:
25 ...... 2,273 1,092 424 1,097 530 206
50 ...... 1,851 984 406 898 479 198
100 ...... 1,693 938 398 824 457 194
200 ...... 1,624 916 394 791 446 192

.75:
25 ...... 1,159 634 267 562 308 130
50 ...... 1,095 614 263 532 299 128
100 ...... 1,066 605 262 518 294 127
200 ...... 1,052 600 261 511 292 127

.90:
25 ...... 895 506 218 434 246 106
50 ...... 879 501 217 427 243 106
100 ...... 871 498 217 423 242 105
200 ...... 867 497 216 421 241 105

Ratio of 95% Confidence Limits of 2d(1-d) Fixed at

2 5 10 2 5 10

.50:
25 ...... 8,356 655 300 3,934 318 146
50 ...... 4,542 615 291 2,192 299 142
100 ...... 3,698 596 287 1,795 290 140
200 ...... 3,384 587 285 1,646 286 139

.75:
25 ...... 3,622 401 192 1,267 195 93
50 ...... 2,316 393 190 1,123 191 93
100 ...... 2,188 389 189 1,062 189 92
200 ...... 2,130 387 189 1,035 188 92

.90:
25 ...... 1,855 325 158 899 158 77
50 ...... 1,788 323 157 867 157 77
100 ...... 1,756 322 157 852 156 76
200 ...... 1,741 321 157 845 156 76

ues applicable for CF (d = .02, r = .70) and MCAD (d
= .01, r = .90), even when the sample sizes are as low as
m = 25 and n = 250, the approximations used in this
work yield confidence intervals close to the exact ones.
The improvement in approximation increases with sam-
ple sizes, more so with an increase of n. The approxi-
mate confidence intervals are wider than the exact

ones, suggesting that use of the simple approximations
(eqs. [10]-[15]) should in fact have a larger level of con-
fidence (>95%) than indicated.

Discussion and Conclusion
The theory developed here depends on the assump-

tion that the population represented by the series of
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Table 3

Comparisons of Exact and Approximate 95% Confidence-interval Estimates of Incidences of Recessive Disease and
Gene Carriers through a Two-Tier Mutation-Screening Survey

95% CONFIDENCE LIMITS OF INCIDENCES OF

Diseases Gene Carriers
CONFIDENCE

m AND n BOUND Exact Approximate Exact Approximate

d = .01, r = .90:
25:

250 ....... Lower 1.66 X 10-5 1.58 X 10-5 7.97 X 10-3 7.93 X 10-3
Upper 6.28 X 10-4 6.35 X 10-4 4.89 X 10-2 4.94 X 10-2

500 ....... Lower 2.76 X 10-5 2.69 X i0-5 1.06 X 10-3 1.03 X 10-2
Upper 3.68 X 10-4 3.72 X 10-4 3.75 X 10-2 3.79 X 10l2

1,000 ..... Lower 3.94x 10-s 3.91 x 1i-0 1.25 X 10-2 1.24 X 10-2
Upper 2.53 X 10-4 2.56 X 10-4 3.13 X 10-2 3.15 X 10-2

50:
250 ....... Lower 1.67 X 10-s 1.58 X 10hs 7.98 X 10-3 7.95 x 10-3

Upper 6.26 X 10-4 6.32 X 10-4 4.90 X 10-2 4.93 X 10-2
500 ....... Lower 2.73 X 10-5 2.71 X 10-5 1.06 x 10-2 1.04 X 10-2

Upper 3.65 X 10-4 3.70 X 10-4 3.76 X 10-2 3.78 X 10-2
1,000 ..... Lower 3.96 X 10-s 3.95 X 10-s 1.26 X 10-2 1.25 X 10-2

Upper 2.52 X 10-4 2.53 X 10-4 3.13 X 10-2 3.14 X 10-2
d = .02, r = .70:

25:
250 ....... Lower 8.84 X 10-s 8.79 X 10- 5 1.91 X 10-2 1.87 X 10-2

Upper 1.78 X 10-3 1.82 X 10-3 8.18 X 10-2 8.23 X 10-2
500 ....... Lower 1.36 X 10-4 1.33 X 10-4 2.32 X 10-2 2.29 X 10-2

Upper 1.17 X 10-3 1.20 X 10-3 6.69 X 10-2 6.72 x 10-2
1,000 Lower 1.78 X 10-4 1.76 X 10-4 2.62 X 10-2 2.62 X 10-2

Upper 9.07 X 10-4 9.08 x 10-4 5.85 X 10-2 5.86 x 10-2
50:

250 ....... Lower 9.03 X 10-5 8.98 X 10-s 1.93 X 10-2 1.89 X 10-2
Upper 1.73 x 10-4 1.78 X 10-3 8.20 x 10-2 8.15 X 10-2

500 ....... Lower 1.39 X 10-4 1.37 X 10-4 2.34 x 10-2 2.32 X 10-2
Upper 1.16 X 10-3 1.17 X 10-3 6.61 X 10-2 6.63 x 10-2

1,000 ..... Lower 1.85 X 10-4 1.84 X 10-4 2.68 x 10-2 2.68 X 10-2
Upper 8.72 X 10-4 8.72 X 10-4 5.74 X 10-2 5.74 X 10-2

patients (first-tier sample) is the same as that from
which the newborn (second-tier) sample is chosen. This
is critical, since the values of r and p affect the estima-
tion in two-tier screening surveys. For CF, r is known to
vary widely between populations. For example, Lemna
et al. (1990) noted that the proportion of CF alleles
carrying the AF508 mutation is considerably higher
(>75%) in northern European Caucasians than in Italy
(57%), Portugal (53%), and Spain (51%). Within-coun-
try geographic variation in populations of the same ra-
cial background has also been noticed in the prelimi-
nary survey conducted in Brazil (S. Raskin, unpublished
data). Therefore, unless appropriate caution is exer-

cised in documenting the ethnic background of pa-
tients, one may easily derive incorrect estimates of the
incidences of disease and gene carriers by using the
above theory. Nevertheless, our observations that 50-
100 patients per population and a 20-fold-larger sample
of newborns would be adequate for diseases such as CF
and MCAD should be of considerable significance in
understanding the geographic distribution of recessive
diseases. Such information should also provide insight
into the origin and maintenance of recessive deleterious
genes, and information thus collected should help to
explain how such diseases have accumulated high fre-
quencies in some regions of the world.
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As mentioned earlier, this theory is also applicable to
autosomal dominant diseases. In such cases, the disease
frequency is given by

d2 + 2d(1-d) = d(2-d) 2d,

when the disease is rare. This is almost equivalent to the
frequency of disease gene bearers, 2d(1-d), for a reces-
sive disease. Therefore, in principle the sample-size eval-
uations presented in table 2 should apply to the evalua-
tion of the incidences of autosomal dominant diseases.
However, all sample sizes reported in table 2 must be
doubled, since, under the assumption that most af-
fected individuals for a dominant disorder are heterozy-
gous, and that, in contrast to the situation for recessive
diseases, the mutation occurs on the disease allele(s)-
bearing chromosome, we can count only one chromo-
some per individual for mutation screening, which re-
sults in twice the number of individuals needed.
Nevertheless, computations presented in table 2 and
figure 1B and D indicate that a mutation-screening pro-
gram with 50-100 patients and 2,000 newborns should
yield estimates of (dominant) disease incidence with a
coefficient of variation around .25 or with 95% confi-
dence intervals whose bounds will not differ by a factor
of 5.
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